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Abstract. Over 100million tonnes of nitrogen (N) fertiliser are applied globally each year to maintain high yields in
agricultural crops. The rising price of N fertilisers has made them a major cost for farmers. Inefficient use of N fertiliser
leads to substantial environmental problems through contamination of air and water resources and can be a significant
economic cost. Consequently, there is considerable need to improve the way N fertiliser is used in farming systems. The
efficiency with which crops use applied N fertiliser – the nitrogen-use efficiency (NUE) – is currently quite low for cereals.
This is the case in both high yielding environments and lower yielding environments characteristic of cereal growing
regions of Australia. Multiple studies have attempted to identify the genetic basis of NUE, but the utility of the results
is limited because of the complex nature of the trait and the magnitude of genotype by environment interaction. Transgenic
approaches have been applied to improve plant NUE but with limited success, due, in part, to a combination of the
complexity of the trait but also due to lack of accurate phenotyping methods. This review documents these two approaches
and suggests future directions in improving cereal NUE with a focus on the Australian cereal industry.
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Introduction

Nitrogen (N) is generally the main nutritional driver of yield and
quality in cereals because it is the mineral nutrient required by
plants in the largest amount (Marschner 1995). Over 1 Mt of N
fertiliser is applied in Australian agriculture each year with N use
a major input cost for Australian cropping; now being at the
same level as fuel (ABARES 2013). Nitrogen fertiliser costs are
volatile because of the dependence on costs of the fossil fuel
used in their production and this is unlikely to change in the near
future. Unfortunately the recovery of the applied N is low, with
only 33% of the applied N ending up in the grain (Raun and
Johnson 1999). A major component of this is due to the poor
uptake efficiency of cereals with only 40% of the applied N being
taken up by the fertilised crop (Peoples et al. 1995; Sylvester-
Bradley and Kindred 2009). Use of N fertiliser impacts the
environment in several ways. First, greenhouse gas emissions
from fertiliser production are significant, as emission of nitrous
oxides,which are 300 timesmore potent as greenhouse gases than
carbon dioxide, from unused N in soils account for 23% of the
total greenhouse gas emissions from Australian agriculture
(Commonwealth of Australia 2015). Second, leaching and run-
off of N fertiliser leads to N pollution of groundwater, rivers and
oceans. This occurs in high and low rainfall regions because early
season waterlogging in dry regions can leach N out of the root
zone. Third, the best known negative effects of N pollution are

associated with algal blooms and fish kills, and recent literature
suggests that the dramatic increase in reactive nitrogen inputs
to the biosphere are of a greater scale than the increase in human
derived carbon dioxide inputs and may have similar or larger
scale effects on thebiosphere (Rockström et al. 2009). In response
to the known environmental impacts of excess N fertilisation,
European countries are introducing systems so that farmers
nowmust account for all applied N fertiliser (Sutton et al. 2011).

Nitrogen-use efficiency: defining the goal

The focus of this review is on rain-fed cropping in Australia –

a predominantly Mediterranean climate with low productivity,
i.e. the average wheat yield <1.5 t ha–1 compared with 8.5 t ha–1

in well watered production areas such as the UK and northern
Europe (FAOSTAT 2014). Although low yielding, this is a very
different situation from that in regions such as sub-SaharanAfrica
where N fertiliser application is low as are yields, although
this situation offers some very different challenges (Bänziger
et al. 1997). This review focusses on the potential to increase
nitrogen-use efficiency (NUE) in cereals in water-limited, but
relatively high N environments.

NUE defined

NUE is a measure of how applied nitrogen fertiliser is utilised by
the plant. The definitions of NUE have recently been reviewed,
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and some of those listed by Good et al. (2004) are shown in
Table 1. The simplest definitions reflect the amount of biomass or
grain production per unit of N:

NUE ¼ Sw=N; ð1Þ
where Sw is shoot weight and N is N content of shoots
(DW), and

NUE ¼ Gw=Ns; ð2Þ
where Gw is grain weight and Ns is N supply (g plant–1)

Further equations describe the twomain components of NUE,
the efficiency with which N is taken up from the soil (uptake
efficiency) and the efficiency with which N is converted to grain
(utilisation efficiency).

UPE ¼ Nt=Ns; ð3Þ
where Nt is total N in plant and Ns is N supply (g plant–1)

UTE ¼ Gw=Nt; ð4Þ
where Gw is grain weight and Nt is total nitrogen in the plant.

Perhaps the most practically useful definition of NUE in this
context is the physiological efficiency,

PE ¼ ðGwF�GwCÞ=ðNF uptake--NC uptakeÞ; ð5Þ
where GwF is grain weight (fertilised), GwC is grain weight
(unfertilised), NF uptake is plant N (fertilised) and NC is plant
N (unfertilised).

Eqn 5 takes into account the crop performance in comparison
to an unfertilised control, or between two levels of N supply.

How can NUE be improved? Management versus
plant improvement

Agronomy

The low NUE of cereal crops can in part be enhanced through
improved N fertiliser management techniques (Keeney 1982;
Cassman et al. 2002).Much of this improvement can be achieved
through better matching of supply to plant demand, split
applications being an important example. Better weather
predictions will help match N supply to seasonal demand, i.e.

if rainfall that would allow a good finish to the season is predicted
then more N can be applied in advance, enabling maximum yield
and quality (Hayman et al. 2007).

Improving plant potential

Although improved fertiliser practice is an important componentof
improving NUE, there is great scope for improving plant potential
for higherNUE.Historically, lowN fertiliser costs have resulted in
plant breeding efforts focussed on high yields with sufficient to
excessive N levels. It has been suggested that this strategy has
resulted innewcultivarswithpoorNUEwhencomparedwitholder
cultivars (Simmonds 1979; Kamprath et al. 1982). This theory has
lost traction because of results showing that under low N, more N
responsive modern varieties still perform better than historical
varieties (Ortiz-Monasterio et al. 1997; Tollenaar and Wu 1999;
Ding et al. 2005; Echarte et al. 2008). Although modern cultivars
mayyield higher than older ones under lowN, there is considerable
scope to increase yield on reduced N, maintaining yield potential
but decreasing the N required doing so.

N nutrition of plants

Forms of nitrogen

The main form of nitrogen fertiliser applied to Australian cereal
crops is urea, followed by various ammonium phosphates and
ammonium sulfate (ABS 2014). Independent of the type of
fertiliser applied, the major sources of N in cropping soils are
nitrate (NO3

–) and ammonium (NH4
+), withNH4

+ being ~10%of
theNO3

– concentration (Wolt 1994;Miller et al. 2007). Due to its
predominance in the soil solution, NO3

– is the predominant N
form taken up by crop plants. The uptake of nutrients by plants is
dependent on roots accessing them from the soil. For nutrients
with high mobility in the soil, such as NO3

–, and even for the less
mobile NH4

+, under most conditions root morphology is thought
to be of considerably less importance than for nutrients with low
soil mobility such as phosphorus (Burns 1980; Robinson and
Rorison 1983).

N transport into the root

Nitrate uptake by roots is facilitated by specific transporters
belonging to high affinity and low affinity transport systems

Table 1. Definitions of nitrogen use efficiency (NUE)
Adapted from Good et al. (2004)

No. Term Formula Abbreviations Comments Ref

1 Nitrogenuse efficiency NUE=Sw/N Sw, shootweight;N,N content
of shoots (DW)

Reflects increased biomass per
unit applied N

Steenbjerg and
Jakobsen (1963)

2 Nitrogenuse efficiency
(grain)

NUE=Gw/Ns Gwgrainweight; Ns, N supply
(g per plant)

Reflects increased yield per
unit applied N

Moll et al. (1982)

3 Uptake efficiency UPE=Nt/Ns Nt, total N in plant; Ns, N
supply (g per plant)

Measures efficiency of uptake
of N into plant

Moll et al. (1982)

4 Utilisation efficiency UTE=Gw/Nt Gw, grain weight; Nt, total
nitrogen in plant

Fraction of N converted to
grain

Moll et al. (1982)

5 Physiological
efficiency

PE= (GwF – GwC)/ (NF

uptake – NC uptake)
GwF, grain weight (fertilised);

GwC, grain weight
(unfertilised); NF uptake,
plant N (fertilised); NC,
plant N (unfertilised)

Measure efficiency of capture
of plant N and conversion to
grain yield

Craswell and
Godwin (1984)
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(HATS and LATS respectively), these transporters belonging
to the NRT2 and NRT1/NPF families (Crawford and Glass
1998; Forde 2000; Tsay et al. 2007; Plett et al. 2010b; Léran
et al. 2014). Although NH4

+ is present in much lower
concentrations than NO3

– it is still an important N source and
most plants grow best with a combination of the two N forms
(Forde andClarkson1999).Ammoniumuptake is via transporters
belonging to the AMT families (Gazzarrini et al. 1999; Loque
and von Wiren 2004; Ludewig et al. 2007).

Uptake of both NO3
– and NH4

+ changes in response to
demand, in which plant growth rate has the largest influence
(Clement et al. 1978; Lemaire and Salette 1984; Clarkson et al.
1986).BothNH4

+ andNO3
–uptake are subject to tight regulation,

both being downregulated by high plant N status (Morgan and
Jackson 1988; Henriksen et al. 1992; Jackson and Volk 1992;
Aslam et al. 1993; Garnett et al. 2013). The regulation of N
uptake seems to be in response to levels of downstream
assimilates such as amino acids (Cooper and Clarkson 1989;
Miller et al. 2008). Although the transporters responsible for
NO3

– andNH4
+ uptake and some of the basics of the regulation of

their transport are known for Arabidopsis, relatively little is
known about how NO3

– and NH4
+ transport is regulated by

crops in the field in response to supply and demand (Malagoli
et al. 2005; Garnett et al. 2009; Garnett et al. 2013).

N storage and assimilation

Once taken up into the plant, NO3
– can be either stored or

assimilated. Nitrate not assimilated in the roots is loaded into
the xylem via an electrochemically downhill process, either via
non-specific anion channels or via specific transporters (Lin
et al. 2008; Feng et al. 2011; Yan et al. 2011; Chen et al.
2012). Once in the shoots, NO3

– can be assimilated, stored or
transported back to the roots via the phloem. The majority of
NO3

– is stored in vacuoles (Miller and Smith 1996). Ammonium
is not usually stored within the plant and is assimilated once
within the root (Raven and Smith 1976). Nitrate assimilation
occurs first via nitrate reductase (NR) to NO2

– and then via nitrite
reductase (NiR) to NH4

+. Ammonium is then assimilated into
organic N via glutamine synthetase and glutamate synthase
(GS/GOGAT) (Oaks 1994; Lillo 2008; Thomsen et al. 2014).
The assimilation of NO3

– can occur in the roots or shoots and
whether root or shoot predominates varies greatly between and
within species and on N status and environmental conditions
(Smirnoff and Stewart 1985).

Very little N is stored in the plant relative to carbon, the latter
of which can be stored in large amounts as water soluble
carbohydrates in the stem (van Herwaarden et al. 1998a). The
majority of N within the plant is in proteins, with proteins such
as Rubisco making up between 12 and 35% of the N in leaves
of C3 plants (Imai et al. 2008). Under N deficiency it is possible
for plants to remobilise protein N from older tissue to growing
leaves, and to cope with less protein N in younger tissue, but in
both cases this leads to reduction in functions such as
photosynthetic capacity (Hörtensteiner and Feller 2002).

N transport within the plant

Nitrogen is readily mobile within the plant and there is a constant
cycling of N throughout the plant via the xylem and phloem

(Cooper and Clarkson 1989). Nitrate is readily transported
in both xylem and phloem but very little NH4

+ is transported
through the plant because of its toxicity (Schjoerring et al. 2002).
The other main forms of N transported in the xylem and phloem
are amino acids and amides (Pate 1973).

Remobilisation

The harvest index (HI), i.e., grain yield as a percentage of
total biomass at harvest, is a good measure of the efficiency of
biomass conversion into harvestable yield and this HI has
continuously increased over the last 50 years (Sinclair 1998;
Fischer 2011). Nitrogen harvest index (NHI), grain N as a
percentage of total plant nitrogen at harvest, is the nitrogen
equivalent of the HI. Ideally, as much of the total plant N as
possible is catabolised from dying vegetative tissue and
transported to the grain; however, there is considerable genetic
variation in this trait and even greater variation caused by
environmental factors (Barbottin et al. 2005).

Between 60 and 95% of grain N in wheat is taken up by the
plant before anthesis (Hirel et al. 2007). This process results in
the majority of N in the grain (51–92%) being derived from
remobilisation of N from the vegetative parts of the plant (Van
Sanford and Mackown 1987a; Barbottin et al. 2005; Kichey
et al. 2007). The extent of remobilisation is dependent on N
availability, environmental conditions and genotype and is
greatly influenced by the extent of post anthesis N uptake
(Moll et al. 1982; Borrell et al. 2001; Martre et al. 2003;
Kichey et al. 2007).

Approaches to improve NUE

Increasing uptake efficiency

As discussed above there is considerable scope for improvement
in the N uptake efficiency (NUpE) (Peoples et al. 1995;
Sylvester-Bradley and Kindred 2009) and there are several
ways this could be achieved.

Increasing uptake capacity

Increased NO3
– uptake capacity may be achieved through better

NO3
– transporters, more effective regulation of the transport

system or better storage and assimilation. Increasing the uptake
capacity of roots is not simple because of the tight regulation of
N uptake, N taken up surplus to requirements increasing plant N
status, which, in turn, leads to feedback regulation and reduction
in uptake capacity (Miller et al. 2007). There is genetic variability
in root N uptake capacity (Dhugga and Waines 1989; Weiland
1989; Ortiz-Monasterio et al. 1997; Le Gouis et al. 2000) and it
may be possible for this to be exploited by breeding programs or
the information gained from understanding these differences can
be used to direct the targeted manipulation of transport processes.
However, Moose and Below (2009) point out that in maize,
although yield per unit of N has increased over time in new
hybrids through increased utilisation efficiency, uptake per
plant has stayed the same, implying that N uptake improvement
by conventional breeding approaches has reached its limit. If
this limitation is real, then it is justification for non-conventional
approaches such as those described later.
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Changing root morphology

Due to the mobility of N in the soil, nutrient uptake modelling
indicates that root morphology is of less relevance for N uptake
than for nutrients such as phosphorus (Burns 1980; Robinson
and Rorison 1983). However, given that NO3

– uptake is
dependent on water movement, root morphology would have a
greater impact on NO3

– uptake in drying soils (Garnett and
Rebetzke 2013). Apart from drying soils, there are other
circumstances where root morphology is of importance to N
fertiliser uptake. In deep sands, NO3

– is readily leached down the
soil profile beyond recoverybycrops. Plantswith rapidlygrowing
deep roots could prevent some of these losses and allow recovery
of nutrient and water that would otherwise be inaccessible
(Gastal and Lemaire 2002; Liao et al. 2004, 2006); however,
this comes at a cost of greater carbon allocation to roots.

‘Stay green’ is a trait whereby plants have delayed senescence
allowing for a longer period of photosynthesis (Thomas and
Smart 1993; Foulkes et al. 2007). In deep soils of the northern
Australian wheat cropping zone this stay green characteristic
has been related to deep rooted genotypes being able to extract
water from deep in the soil profile (Christopher et al. 2008). For
sorghum and maize this trait was thought to be related to higher
specific leaf N, allowing greater N and carbon allocation to root
growth (Borrell et al. 2001; Worku et al. 2007). Remobilisation
of N in stay green genotypes can be reduced with reduced
senescence, a lower N harvest index, but this is thought to be
offset by increased N uptake from the soil during grain filling
(Borrell and Hammer 2000). The usefulness of this trait may be
limited to these deep soils were crops rely on stored water for
growth.

Increasing utilisation efficiency

Modifying specific leaf N

Increasing the photosynthetic N utilisation efficiency (PsNUE)
is another approach to improve NUE. By increasing the leaf
area index and decreasing the specific leaf N, the radiation use
efficiency could be increased (Gastal andLemaire 2002). The key
enzyme involved in carbon fixation is Rubisco and this enzyme
makes up a large proportion of leaf N (Imai et al. 2008). Rubisco
is also involved in photorespiratory losses which can be as high
as 20% of total carbon fixation in C3 plants and also liberates
ammonia, which requires re-assimilation (Bauwe et al. 2010).
Increasing the efficiency of Rubisco should improve PsNUE,
and progress towards this goas has been made (Lin et al. 2014).
In C4 plants, such as maize, photorespiration is limited by
structural and metabolic changes making them much more
efficient in terms of carbon and N (Hibberd et al. 2008).
Increasing PsNUE may have a downside since lower leaf N
levels reduce the amount of N available for remobilisation.

Delayed senescence (stay green)

Stay green was introduced above in relation to uptake efficiency.
Although the mechanisms are not fully understood, it appears
that stay green is not necessarily linked to continued uptake of
N and water by roots (Foulkes et al. 2009). Stay green can be
linked to delayed senescence, which could be beneficial by
enabling continued photosynthesis with age, but could be
detrimental for NUE if it reduced remobilisation ofN to the grain.

Increasing remobilisation efficiency

Nitrogen remobilised from vegetative parts to the grain accounts
for between 60 and 92% of grain N (Van Sanford and Mackown
1987a; Palta et al. 1994;Barbottin et al. 2005;Kichey et al. 2007).
The percentage ofN remobilised to the grain is usually lowerwith
high N supply (Moll et al. 1982) but is also dependent on the
extent of post anthesis N uptake and environment (Borrell et al.
2001; Martre et al. 2003; Barbottin et al. 2005; Kichey et al.
2007). The efficiency of N remobilisation has been found to
increasewithwater stress, so is likely linked to a reduceduptakeof
N from drying soils (Palta et al. 1994). The multitude of factors
that affect remobilisation makes it a difficult trait to select for.
Improved nitrogen content in wheat grains related to the Gpc-B1
locus was found to be due to early senescence regulated by genes
from the NAC family of transcription factors (Uauy et al. 2006).

For wheat, grain protein is an important determinant of the
price a grower gets for their crop.An inverse relationship has been
observed between grain protein and yield, with higher yielding
crops commonly showing decreased grain protein (Bogard et al.
2010). The nature of this relationship is not simple with the
strength of the relationship varying considerably between studies
and there being a significant genotype� environment interaction
(Oury and Godin 2007). Selecting genotypes that deviate from
this negative relationship, i.e., those genotypes that maintain
protein with high yield, has been suggested as a tool for
breeding programs aiming to address this issue (Monaghan
et al. 2001).

Genetics of NUE

As with all complex traits, identification of important NUE-
related genes may be accomplished using a genetic approach.
However, as with other complex traits such as drought tolerance,
the current understanding of the genetic elements providingNUE
in cereal, oilseed and legume crops is quite limited. Though they
are not the specific focus of this review, NUE related genetic
studies in maize and rice are the most extensive of any crop and
will be discussed here as theyhave potential to inform futurework
in cereals, oilseeds and legumes.

The mapping of quantitative trait loci (QTL) controlling NUE
in cropplantswill be useful for several reasons (Moose andBelow
2009). First, the loci controllingNUEand its component traits can
be discovered. Second, improved map-based cloning techniques
makes QTL mapping a useful approach for discovering genes
with an important impact on NUE and component traits. The
discovery ofmolecularmarkers that are tightly linked toNUE loci
enables selection for important NUE genes without extensive
phenotyping of germplasm with multiple N treatments. Also,
knowledge of NUE QTL will be important when incorporating
NUE improvement transgenes intomultiple genetic backgrounds
to ensure maximum trait expression and stability.

Genotypic variation

A crucial first step in any genetic mapping and breeding
approach is to identify the existing variation in available
germplasm. As NUE is a complex trait, this involves
measurement of a variety of individual component traits, the
importance of each being variable between environments and
crops.
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Variation in NUE and related traits has been described in:
wheat (Cox et al. 1985; Van Sanford and MacKown 1987b; Le
Gouis and Pluchard 1996; Le Gouis et al. 2000); barley (Anbessa
et al. 2009; Anbessa et al. 2010; Beatty et al. 2010); legumes
(Harrison et al. 2004); oilseeds (Grami and Lacroix 1977; Yau
and Thurling 1987; Sve�cnjak and Rengel 2006a, 2006b); maize
(Bertin and Gallais 2000; Hirel et al. 2007); rice (Cassman et al.
1993; Tirol-Padre et al. 1996; Borrell et al. 1998; Ladha et al.
1998; Mae et al. 2006; Samonte et al. 2006); and the model plant
species Arabidopsis (Chardon et al. 2010; Masclaux-Daubresse
and Chardon 2011).

There are few studies that present data for relative grain yield
between low and high N treatments. However, several of the
studies above provide NUE calculations (e.g. grain yield per unit
of available N) for a set of varieties at low and high N treatments
separately. In a recent example, 10 field grown barley lines
were evaluated for NUE (kg grain per kg available N) and the
highest ranking lines had 20–40% higher NUE than the lowest
ranking lines within individual N treatments and trial years
(Beatty et al. 2010). Similar results have been found in several
other studies mentioned above, indicating that there is useful
variation within varieties currently grown by producers.
However, these measurements can be difficult to interpret as
NUE measurements and even rankings of the NUE of varieties
often change substantially from year to year. This indicates that
other environmental factors influence measurements of NUE in
field trials and may mean future variety evaluations will need to
occur in more carefully controlled conditions.

If there was no variability in elite germplasm it would be
difficult to improve NUE via conventional breeding. It has been
suggested that decades of breeding for yield without N limitation
has resulted in N responsive plants that are poorly adapted to
low N availability. However, studies in wheat and maize have
shown that modern, N responsive germplasm out yield older
less N responsive germplasm even under low N conditions
(Hirel et al. 2007; Moose and Below 2009). As discussed
above, there appears to be genetic diversity for NUE in elite
germplasm; however, with such a complex trait and substantial
environmental interactions, this makes the genetic components
of NUE difficult to dissect.

Exotic germplasm may be useful in better understanding
particular aspects of NUE and this knowledge could be
utilised in designing breeding goals. The genetic variation
available in exotic germplasm may also be useful in the
genetic improvement of NUE and component traits. Exotic
germplasm has not been extensively evaluated for NUE or
component traits, partially because it is difficult to accurately
measure and compare NUE in material with a broad range of
growth habits and phenologies. This approach is being
successfully used in maize breeding for a variety of traits and
is being utilised in combinationwith associationmapping studies
(McMullen et al. 2009),which suggests there is promise for using
exotic germplasm in NUE genetic studies and improvement
strategies in small grained cereals.

QTL mapping studies

A variety of traits contributing to NUE have been evaluated
in multiple populations and these studies are summarised in

Table 2. In wheat and maize there are individual populations
that have been most extensively focussed on. The wheat RIL
population Arche�Recital has been characterised for a large
variety of traits in both glasshouse and field studies (Laperche
et al. 2006, 2007; Fontaine et al. 2009).ThemaizeRILpopulation
F2� Io population has been used for multiple studies and the
QTL for agronomic traits identified in older studies have been
compared with newly identified QTL for biochemical traits to
search for co-localisation of traits (Bertin and Gallais 2001; Hirel
et al. 2001; Limami et al. 2002; Gallais and Hirel 2004; Coque
et al. 2006; Coque and Gallais 2006). This appears to be a good
approach to maximise the data extractable from each population,
but it is likely that further study is needed in separate populations
to identify further important NUE QTL and genes.

When the studies have provided candidate genes located
beneath QTL the candidate genes are often responsible for
controlling photoperiod (Ppd-A1 and Ppd-B1), dwarfing (Rht-
B1andRht-12) andvernalisation (Vrn-A1andVrn-D1).Thiswas
especially highlighted in a recent meta-QTL analysis which
analysed the data from three previous mapping studies in
wheat and showed these candidate genes under the 11 meta-
QTL identified (Quraishi et al. 2011). These results are not
surprising considering these traits control developmental time,
thus affecting the time for the crop to uptake and assimilate N.

Another class of candidate genesdiscussed in severalmapping
studies are those encoding enzymes related to the assimilation
and remobilisation of N. A large number of QTL identified
across species have genes encoding glutamine synthetase
(GS), glutamate synthase (GOGAT) or NO3

– reductase (NR)
located within the QTL interval. This suggests that these genes
are important for NUE and may be suitable targets for further
breeding and transgenic approaches to improvingNUE.However,
the QTL associated with these genes encoding enzymes are often
extremely wide with small effects, thus, fine mapping studies and
ultimately transgenic manipulation of the genes would be required
to strengthen this hypothesis. Additionally, a recent study of the
activity of several N assimilation enzymes in the maize
B73�Mo17 IBM population showed that only three of 81
identified QTL were cis-QTL, meaning the gene encoding
the enzyme was located beneath the activity QTL (Zhang et al.
2010). This suggests that genes encoding regulatory proteins are
more important for the actual activity of the N assimilation or
remobilisation enzyme than the gene encoding the enzyme itself,
thus regulatory proteins may be better targets for improving NUE
through breeding and transgenic approaches.

The most common definition of NUE involves a relative
measurement of growth traits or yield at low versus high N
provision (physiological NUE). Surprisingly there are few
studies that have mapped QTL for this type of relative
measurement. Approximately half of the NUE QTL studies
have been undertaken at one N level and many of the others
havebeenundertakenwith a combinationof ‘normal’Nprovision
and ‘no’ N provision. It is difficult to compare between studies
utilising ‘no’ N treatments as European soils without added
fertiliser often contain N levels comparable to those found in
fertilised Australian soils. Two studies from rice that mapped
QTL forNUEcomparedbetween lowandhighNprovision in rice
(Lian et al. 2005; Feng et al. 2010) and more of this type of
experiment would be useful to identify QTL for NUE. The
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inherent difficulty in accurately measuring NUE traits in the
glasshouse and field may be compounded when comparing
relative trait values at low and high N rendering the relative
values (and their associated QTL) prone to large errors. Most of
the studies summarised in Table 2 describe large numbers ofQTL
for each measured trait and often these QTL do not appear in
multiple studies.

Reproducibility of QTL mapping and the ability to fine map
QTL and ultimately the cloning of the gene beneath the identified
QTLdepends on the quality of the phenotyping (in addition to the
quality of the genetic resources). Very few genes have been
identified as being responsible for NUEQTL. One such example
is a NAC transcription factor gene identified from a population
derived from wild emmer wheat and durum. The transcription
factor is responsible for delayed senescence in wheat and also for
the control of the grain protein, zinc and iron content (Uauy et al.
2006).Although the authors speculate the increased content is due
to increased remobilisation of N, zinc and iron to the grain, it
would require further analysis of N uptake and remobilisation to
determine if this speculation is accurate. Regardless, cloning of
genes underlying QTL will require improved phenotyping
methods to improve repeatability of QTL identification as well
as improved fine mapping. This will also allow development of
perfect molecular markers for important NUE genes in breeding
programs as well as the cloning of these genes for introduction
into other germplasm through transgenic approaches.

Utilising genetic variation to improve NUE

Current QTL data are of limited use for improving NUE in
varieties developed for Australian cropping. This is because it
is a complex trait with a large number of QTL with little overlap
between studies, and also because most studies have been carried
out under conditions not relevant to the unique conditions of
Mediterranean environments. It is essential to begin a dissection
of the genetics of NUE relevant to the Australian cropping zone
using appropriate mapping populations. Progress in this may
be enhanced by conducting mapping studies in controlled
environments in parallel with field-based studies.

In addition to the development of refined and high-throughput
phenotyping of varieties and populations suitable for Australian
cropping environments, efforts to improve NUE in crop plants
will need to be underpinned by advances in platform
technologies, especially biotechnology. Collins et al. (2008)
identified several factors that will facilitate the identification
and cloning of QTL. First, improvement of molecular platforms
including single nucleotide polymorphism profiling, ‘omics’
profiling, tiling arrays and mapping approaches, such as
association mapping (Rafalski 2010). Second, the development
of new types of genetic materials and techniques, including
multiparental approaches such as multiparent advance
generation intercross (MAGIC) populations (Huang et al.
2012; Sannemann et al. 2015) and nested association mapping
(NAM) populations (Yu et al. 2008); third, progress in
bioinformatics will improve functional maps and comparative
mapping; and finally, advances in sequencing technologies (e.g.
genome and transcriptome), tools for functionally characterising
genes, such as TILLING and RNA interference. Genome wide
association studies (GWAS) may help with identifying genes

important toNUEby allowing greater analysis of diversitywithin
a species, especially when combinedwith improved phenotyping
methods (Heffner et al. 2009; Poland et al. 2012; Charmet et al.
2014; Cooper et al. 2014). The development and implementation
of new and improved technologies will increase the rate of
progress in genetic improvement of NUE of polypoloid crop
species with large and complex genomes such as wheat.

Transgenics approaches to improving NUE

Compared with the conventional genetic approach, gene
modification by transgenic approaches allows the introduction
of a single genewithout affecting themajority of the genome.This
approach has been successfully applied to introduce valuable
agronomic traits such as disease, pest or herbicide resistances into
crops, and theGMcrops carrying these traits have been cultivated
in 22 countries, with large areas in the USA and Canada but also
now in Argentina, Brazil, China and India (FAOSTAT 2014).
Improving NUE by biotechnological approaches is also major
priority for plant researchers. Although there is no NUE
technology ready in the market, industrial parties have been
investing substantially in NUE due to its huge potential. Good
et al. (2004),Brauer et al. (2011) andMcAllister et al. (2012) have
presented comprehensive summaries of NUE and the molecular
physiology approaches for improving it. Herein, we update the
current biotechnological activities based on publically available
information and further highlight some potential approaches
which could be applied to improve NUE in crops in future.

Current approaches

Glutamine synthetase (GS) is the most studied gene aiming to
improve NUE both in monocot and dicot plants (Table 3). In
some cases transgenic lines overexpressing GS displayed
improvements in NUE, resulting in increased biomass and
grain yield. However, dicot crops studies often failed to show
any improved phenotypes. The different results may be due to
the unfavourablematch of recipient and donor species of the gene
or the promoter choice (Good et al. 2004; Brauer et al. 2011).
Negative results may also have been related to lack of knowledge
of the complexity of GS1 and GS2 isoforms and the roles and
distribution within the plant (Thomsen et al. 2014). Good et al.
have developed a technology using alanine aminotransferase
(AlaAT) (Good et al. 2007; Shrawat et al. 2008). When barley
AlaATwas expressedunder control of a stress inducible promoter
btg26 or OsAnt1 in canola or rice, respectively, the transgenic
lines showed significant improvement in NUE under relatively
low nitrogen conditions. In their field studies the transgenic
canola required 40% less N fertiliser than wild type plants to
achieve the highest yield potential (Good et al. 2007). The same
trend was also observed in rice glasshouse studies, although the
reduction of N fertiliser (by 12%) was not as great as the case for
canola (Shrawat et al. 2008). The AlaAT technology is currently
the most advanced NUE technology both in monocot and dicot
plants but the biological mechanism behind the technology is still
poorly understood.

Glutamate dehydrogenase (GDH) is also an potential
candidate gene for NUE. There are two publications describing
transgenic approaches to constitutively express GDH in tobacco
and rice aiming to improve NUE (Ameziane et al. 2000; Abiko
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et al. 2010). In both cases the transgenic plants showed increased
biomass and seed yield in thefield. InterestinglyGDHwas cloned
fromEscherichia coli orAspergillus, but not from plants in either
report. When Nicotiana plumbaginifolia GDH was expressed in
tobacco, biomass was decreased (Terce-Laforgue et al. 2013).

DNA binding with one finger (DOF1) is one of the few
examples of transcription factors used to improve N metabolism
in plants. When DOF1 was overexpressed in Arabidopsis, the
transgenic lines showed modification in N and C metabolism,
and better growth under low N conditions (Yanagisawa et al.
2004). Similarly DOF1 overexpressing rice lines also displayed
increased biomass and enhancement in N and C metabolism
(Kurai et al. 2011). When a rice early nodulation gene
OsENOD93–1 was overexpressed in rice, the transgenic lines
showed improved NUE including biomass and seed yield
increase under both N-limiting and non-limiting conditions (Bi
et al. 2009). AGL21, a member of the MADS-box transcription
factor family seems to be involved in lateral root formation,
overexpressed lines produced more lateral roots than wild type
Arabidopsis (Yu et al. 2014). This gene is also patented for the
purpose of improvement of NUE.

Nitrogen transporters and other N assimilatory enzymes
are well characterised as to their function. However, several
attempts to improve NUE by manipulating these genes gave
mixed results; especially no positive outcomes were observed
with N transporter studies (Table 3). Most of the previous studies
used ectopic promoters such as CMV35S to drive a gene of
interest, and this might be the reason for the negative impact on
NUE (Table 3). One approach to overcome the problem is to use
tissue specific promoters and/or inducible promoters to target
expression to when and where the gene is needed (Table 4). For
example, salt tolerance was enhanced in Arabidopsis and rice by
manipulating the expression of some key sodium transporters in
the root in a cell specific manner (Moller et al. 2009; Plett et al.
2010a).

Longer term approaches

Because C4 photosynthesis is 50% more efficient in plants than
C3, engineering C4 photosynthetic system into C3 plants became
a plant scientists’ big dream because plants can continue to
photosynthesise when stomata are closed such as under water
limitation. C4 plants can fix CO2 more efficiently with less
Rubisco compared with C3 plants. Therefore, in theory
engineered C3 crops with a C4 system should also show traits
of improved water and nitrogen use efficiency (Brutnell et al.
2010). Rice is probably the most studied crop in this regard
(Hibberd et al. 2008; Taniguchi et al. 2008; Miyao et al. 2011).
For example, four enzymes from C4 pathway were introduced
and successfully overproduced in the rice mesophyll cells,
although no transgenic rice plants showed an improvement in
photosynthesis compared with the control plants (Miyao et al.
2011). Also the International Rice Research Institute (IRRI) and
associated partners have initiated a project to engineer C4 rice
(http://irri.org/c4rice, accessed 15May 2015), demonstrating the
potential of the technology.

Although it has been long known that N-fixation in non-
legume plants by nodulated roots or associated with N-fixing
nodule independent bacteria (Bond andGardner 1957;Beatty and

Good 2011), agronomic research on this topic has been advanced
more in the last decade (Bhattacharjee et al. 2008). When maize
andwheatwere inoculatedwith anN-fixing bacterium,Klebsiella
pneumonia 342, the inoculated plants were rescued from N
deficiency symptoms (Riggs et al. 2001; Iniguez et al. 2004),
and the wheat plants also showed increased total N content
(Iniguez et al. 2004). Another N-fixing bacterium isolated
from sugarcane, Gluconacetobacter diazotrophicus was able to
enhance growth of the inoculated sugarcane displaying increased
biomass and N content which were equivalent with the plants fed
with fertiliser at rate of 140 kg N ha–1 (Muthukumarasamy et al.
2006).DevelopingN-fixing cropswith root nodule symbiosis has
also been attempted from both N-fixing bacteria and non-legume
host crop plants (Charpentier and Oldroyd 2010). There are
several major issues to be solved before the technology will
be broadly applied (e.g. host specificity of N-fixing bacteria,
and insufficient carbon traffic between host plants and bacteria).
However, this technology certainly has the potential to improve
NUE in non-legume crops.

Cisgenesis is a term for gene modification of a new
combination of promoter, gene of interest and terminator from
the same species or sexually compatible species as used for
conventional breeding. Cisgenic plants could contain a single
or more cisgenes, but should not contain a transgene. The US
Environment Protection Agency (USEPA) has been considering
changing regulation of cisgenic plants to make them exempt
from the regulatory process (Waltz 2011). The idea was also
shared by the USDepartment of Agriculture (USDA) and the US
Department of Health and Human Services (USDHHS). If the
exemption of cisgenic plants becomes valid, the cost and process
of commercialisation of genetically modified (GM) crops
would be substantially reduced. Therefore, researchers should
consider the cisgenic approach when they aim to release the GM
products to the market.

Plant transformation is still a developing technology, with
crops like wheat only recently being routinely transformed. In
other crops such as barley, technique development has progressed
such that elite germplasm is now being transformed, which
have been recalcitrant to transformation previously. This
enables evaluation of transgenes directly in relevant varieties
adapted to Australian growing conditions, speeding up the time
of delivery of improved germplasm to breeders. Technological
advances in the transformation area are ongoing, and
cleaner transformation methods, e.g. Agrobacterium-mediated
transformation versus biolistics, marker free transgenics and
targeted gene editing such as with CRISPR/Cas (Belhaj et al.
2013) are examples that could enhance probabilities of positive
outcomes.

Interactions with other breeding goals

Drought

Due to unreliable rainfall, water is the dominant factor limiting
yield for most Australian cereal growers and as such, is the factor
that farmers must manage first. Although farmers cannot
control rainfall, manipulating N is the major way growers can
accommodate uncertain water availability. Farmers apply N at
stem elongation dependent on actual and predicted water
availability for that season to avoid ‘haying off’ (van
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Herwaarden et al. 1998a, 1998b, 1998c). Some growers even
applymultiple in seasonN applications to bettermatchNdemand
with water supply. More accurate weather predictions would
allow better management of N (Hayman et al. 2007), as would
improve application practises; however, growers will continue to
react to drought by varying N application. This has to be taken
into account when targeting NUE, in this water limited
environment, N availability will be limited through necessity.
If this constraint is kept in mind, it seems unlikely any breeding
for NUE will have a negative impact on water use efficiency
(WUE) (Garnett and Rebetzke 2013).

One WUE trait that may conflict with NUE is in breeding
for high early vigour. Early vigour is one goal of programs aimed
at improving WUE through reducing soil evapotranspiration
and enabling greater access to soil water and nutrients
(Rebetzke and Richards 1999). However, if this early vigour
leads to greater biomass that then leaves the crop open to haying
off, it would have a negative impact.

Quality

ImprovingNUE cannot be chosen at the expense of grain quality,
more specifically in relation to N, grain protein. A simple way of
improving NUEwould be to drop grain protein targets, an option
formaize aimed at the bioethanol productionmarket.However,N
efficient plants that yield well but do not have sufficient N to put
into the grain are not ideal for cereals or oilseeds. As discussed
earlier, there is already an inverse relationship between yield
and grain protein the breaking of which is the target of breeding
programs. Any germplasm with high NUE will always have to
maintain standards of quality before release and this will have

to be taken into account. Improvement in NUE through both
management and breeding will have growers better prepared for
a wet finish to the season and will avoid quality drops that are
common when this occurs.

Biofuels

Breeding for NUE should have little impact on biofuel
production. Oilseed crops with improved oil composition for
biofuel production will have minimal differences in N. Using
cereal chaff for biofuel production would have little impact on
NUE as it is desirable to remobilise as much N as possible out of
the chaff and into the grain.

Future directions

Timeframes are based on the assumptions that efforts commence
now, and germplasm delivery refers to delivery of a product to
farmers (including breeding and pre-breeding activities).

Phenotyping (<5 years)

Better phenotyping is a high priority both for understanding the
genetics of NUE and evaluating new material. Because of the
major effect of environment on N availability and demand, this is
a major factor confounding NUE trial results. Aside from
rainfall, soil characteristics are another important influence on
N availability and trial outcomes. Better characterisation of
environmental data of field trials in general and within trial
variation in environment will improve the quality of results.
Root diseases further complicate trial results; however, this

Table 4. Examples of tissue-specific and inducible promoters in plants

Gene Source Expression patterns Reference
Inducible Tissue-specificity

Cor78 Arabidopsis Cold, drought, salt,
ABA, wounding

Ishitani et al. (1997)

Rci2A Arabidopsis Cold, dehydration Capel et al. (1997)
Rd22 Arabidopsis Drought, salt Yamaguchi-Shinozaki

and Shinozaki (1994)
Cor15A Arabidopsis Cold, dehydration, ABA Baker et al. (1994)
GH3 Soybean Auxin Liu et al. (1994)
ARSK1 Arabidopsis Salt Root Hwang and Goodman (1995)
PtxA Pea Salt Root GenBank no. X67427
SbHRGP3 Soybean Root Ahn et al. (1996)
KST1 Potato Guard cell Plesch et al. (2001)
KAT1 Arabidopsis Guard cell Plesch et al. (2000)
PRP1 Tobacco Pathogen Ward et al. (1993)
Hsp80 Heat US patent no. 5187267
Alpha-amylase Cold PCT application no.

WO96/12814
PinII Wound Euro patent no. 375091
RD29A Arabidopsis Salt Yamaguchi-Shinozaki

and Shinozaki (1993)
Viral RNA-

polymerase
Plastid PCT application no.

WO95/16783, PCT
application no. 97/06250

NRT1.1 Arabidopsis Root primordial, root tips Remans et al. (2006)
ANR1 Arabidopsis Root primordial, root tips Remans et al. (2006)
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problem is getting easier to manage with improved diagnostic
methods.

However, advances in plant growth analysis and imaging
capacity should enable development of suitable, high-
throughput methods to evaluate germplasm in a highly
accurate and repeatable manner both in the field and in
controlled environments (Furbank and Tester 2011). Further,
protocols to evaluate germplasm for NUE traits alone and
their interactions with other environmental aspects (genotype
� nitrogen� environment) will need to be developed. The N in
this should also include management of N, i.e. if split N
applications are routine then this needs to be incorporated into
trial designs.Not onlywill this be necessary in the glasshouse, but
in the field, using rainout shelters and irrigation to control for
interactions between NUE and drought. The ideal measure of
NUE of a variety will be relative yield at low and adequate N
provision, but also include component traits (e.g. biomass at a
definedpoint in the lifecycle). Controlled environments, although
not equivalent to the field, do allow better dissection of
environmental components to traits and also allow evaluation
of transgenics where fieldmeasurements aremade difficult due to
regulatory constraints or where seed quantity is limited such as
with newly developed populations.

Most studies have utilised phenotyping under low and high N
provision separately. To identify QTL involved in physiological
NUE, phenotypes need to be compared between the two
treatments (e.g. the ratio of yield at low vs high N provision)
to identify varieties that will yield well on a range of N provision.
Another important factor is that trials must use N fertiliser
practices that are consistent with local practices in aspects
such as timing of fertiliser application.

Phenotyping root traits may be necessary to improve N
uptake (Lynch 2007); however, above-ground traits are easier
to measure and have been the target. There are examples of
this approach in maize (Liu et al. 2008) and pea (Bourion
et al. 2010), although further development in root imaging
technologies will make this approach more feasible.

Exploring variation in existing varieties (<5 years)

Understanding of basic biology involved in N uptake and
utilisation across the lifecycle and development of accurate
phenotyping methods will allow evaluation or re-evaluation of
NUE and component traits in existing varieties. Evaluations will
be required in glasshouse and field trials over multiple years and
in combination with interacting environmental factors.

Understanding the biology (5+ years)

As mentioned above, basic knowledge of the components of
NUE and how they interact with other factors influencing plant
growth, development and yield is lacking. This type of basic
characterisation of the physiological and molecular biological
factors involved in NUE throughout the lifecycle of the crop
will be crucial for developing appropriate phenotyping
methods and for evaluation of variation in existing and exotic
germplasm as well as quantifying improvements made to
NUE through traditional breeding and transgenic approaches.
Advancing knowledge of the biology underlying NUE will

greatly facilitate interpretation of genomics information and
inform choices for transgenic manipulation targets.

Utilising variation in existing populations and varieties
(5+ years)

Existing mapping populations or those developed based on
evaluation of NUE in existing varieties can be utilised for
QTL and association mapping approaches. To date, association
mapping has not been utilised in NUE trait mapping studies in
cereals, but represents an important resource that should be
utilised in future work with existing varieties and diverse
germplasm projects. Ultimately the genes responsible for the
NUE locus will be identified through fine mapping and cloning;
however, beneficial NUE alleles may be moved into existing
varieties using marker assisted conventional breeding before the
actual cloning of the gene.

Utilising variation in exotic germplasm (5+ years)

Evaluation ofNUE in exotic germplasm is a difficult task because
of the wide variation in agronomic factors, including plant size,
architecture, WUE, heading dates and yield. Component NUE
traits identified in exotic germplasm can be backcrossed into
existing varieties in order to develop germplasm for mapping the
NUE loci and improving the NUE of the existing varieties. New
technologies and techniques such as association mapping and
sequencing platforms should benefit this area greatly and will
speed the process of identifying and utilising beneficial exotic
NUE alleles to improve existing varieties. Depending on the trait
and the genetic complexity associated with the trait, transgenic
approaches may be more suitable than conventional breeding
approaches in this case.

Crops have been selected under high N, thus, potentially
limiting NUE under reduced N application. To find variation it
may be useful to assess more diverse germplasm. One effort has
been made to introgress wild allelic variation into domesticated
barley and this indicates the potential of this approach. This effort
focussed on the introgression of NUE traits from Hordeum
sponteneum into adapted barley (Saal et al. 2011). It may be
difficult to introgress traits into commercial varieties if germplasm
is too exotic.

Application of advanced genomics approaches
to enhancing NUE (5+ years)

The genomics field is going through a stage of rapid development
and the outcome has been that a whole new range of approaches
are nownot only possible but viable.Utilising these advanceswill
make improvement of a complex trait likeNUEmuchmore likely
than has previously been possible. Newapproachesmoving away
from bi-parental populations to advanced populations such as
NAM and MAGIC populations are now being utilised in efforts
to map NUE related traits. Next generation sequencing offers
the opportunity for high throughput genotyping of germplasm
at low cost and because of this, approaches such as genomic
selection are now being utilised by breeding companies. Major
advances in bioinformatics, aided by collaborations through
international consortia such as the International Wheat Genome
Sequencing Consortium, will enable progress in genetic
improvement of wheat and barley to rival crops such as maize.
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As summarised by Moose and Below (2009), the integration of
quantitative trait mapping, transcriptomics, metabolomics and
transgenics is the next step in breeding for NUE. The work of
Zhang et al. is an example of such an integrative approach (Zhang
et al. 2010, 2015).

Transgenic technologies (5+ years)

There is currently an existing transgenic technology – alanine
aminotransferase (Good et al. 2007) – that is being evaluated
in Australian cereals as part of a commercialisation process.
At present there are no other published technologies that are
being evaluated. It is most likely that the first transgenic
NUE approaches introduced to Australian cereals and oilseeds
will be through collaborative agreements with international
biotechnology partners through access to their existing
intellectual property.

Further transgenic approaches to improve NUE will be
identified through hypothesis based identification of candidate
genes, positionally cloning genes in QTL or screening
mutagenised populations. Real progress will be made through
improved transformation protocols, improved gene–promoter
combinations, whole-pathway manipulation, stacking multiple
genes and better phenotyping.
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