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Much of the elite wheat germplasm 
developed for the Pacifi c Northwest states of 
Washington, Oregon, and Idaho possesses one or 

more physiological or anatomical traits that improve perfor-
mance under water-limiting conditions (Blum, 2011). Due to 
low heritability of grain yield in drought environments, direct 
selection for drought tolerance is challenging (Lopez et al., 
2003; Schramm et al., 2010). An important trait contributing 
to improved grain yield of wheat grown under drought is the 
accumulation of soluble carbohydrates in stems aft er anthesis 
but before grain fi ll (Zadoks growth stage 60) (Zadoks et al., 
1974; Rebetzke et al., 2008). During stem elongation, wheat 
and other grasses store extra photoassimilates as nonstructural 
carbohydrates, mostly fructans, in the upper internodes of 
stems (Batten et al., 1993; Olien and Clark, 1993; Schnyder, 
1993; Wardlaw and Willenbrink, 2000). Th ese carbohydrates 
can be remobilized for grain fi lling during drought or heat 
stress, when photosynthetic activity is low. Th e concentration 
of these soluble stem carbohydrates has been positively cor-
related to grain yield under drought, contributing up to 50% 
of the variation for yield and comprising up to 40% of the 
stem dry weight (Gallagher et al., 1976; Brooks et al., 1982; 
Aggarwal and Sinha, 1984; Blum et al., 1991; Schnyder, 1993).

Soluble stem carbohydrates have been used as an indirect 
selector for grain yield in the early stages of wheat breed-
ing when yield plots are not feasible. Previous research has 
demonstrated that the genotypic rankings for soluble stem 
carbohydrates in wheat in large part have been constant 
across drought-aff ected environments in Australia and have 
high broad-sense heritability (h2 = 0.9) (Foulkes et al., 2002; 
Ruuska et al., 2006; Rebetzke et al., 2008). Predicting wheat 
yield under drought through soluble stem carbohydrate assays 
has become a standard practice in Australian wheat breeding 
programs (van Herwaarden and Richards, 2002). While post-
anthesis soluble stem carbohydrates have been associated with 
grain yield under drought for some North American wheat 
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ABSTRACT
Soluble stem carbohydrates are a component of drought 
response in wheat (Triticum aestivum L.) and other grasses. 
Near-infrared spectroscopy (NIR) can rapidly assay for soluble 
carbohydrates indirectly, but this requires a statistical model for 
calibration. Th e objectives of this study were: (i) to build a robust 
calibration between the NIR spectra and soluble carbohydrate 
concentration of ground wheat stems; and (ii) to determine 
whether soluble stem carbohydrates are correlated with yield 
rankings of drought-stricken wheat grown in the northwestern 
United States. Five spring wheat cultivars were grown in fi eld 
trials conducted at six environments in the state of Washington 
varying in annual precipitation from 212 to 474 mm. Wheat 
stems were harvested from all plots at the onset of grain fi ll 
and assayed for NIR refl ectance. Soluble stem carbohydrates 
were determined on a subset of the samples. Th e NIR data were 
calibrated to soluble stem carbohydrates using multiple linear 
regression, partial least squares regression, ridge regression with 
best linear unbiased prediction, random forest,  least absolute 
shrinkage and selection operator (lasso), elastic net, and Bayesian 
lasso regression. Partial least squares regression provided the 
most accurate and reliable predictions for soluble carbohydrates. 
Correlations between soluble stem carbohydrates and grain 
yield were consistent across environments (r = 0.904 and r = 
0.80). Th e eff ect of environment on the variation in response 
variables was lower for soluble carbohydrates than yield (5.93 
and 71.7%, respectively) across environments. Th ese data 
provide evidence that stem carbohydrates can aid in selecting 
cultivars with enhanced drought resilience.
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genotypes (Ehdaie et al., 2006, 2008), the use of stem carbohy-
drates for selection is not widespread in the United States. This 
is because (i) more research is needed to understand the role 
of soluble stem carbohydrates in the drought response of US 
wheat germplasm, and (ii) the assay for soluble carbohydrates 
is time consuming and requires the use of a caustic chemicals 
(Parnell and White, 1983; Brink and Marten, 1986; Brown et 
al., 1987).

Near-infrared spectroscopy has been used to estimate organic 
compounds such as protein content, digestible fiber content, 
and starch in small grains, forages, and other agronomic crops. 
It requires little sample preparation and is relatively inexpensive 
(Delwiche, 2004; Roberts et al., 2004; Osborne, 2006), but 
NIR spectral data must be statistically calibrated to a set of 
laboratory assay results for a given trait. Two common model-
ing techniques used for NIR calibration are (i) best subset 
selection by multiple linear regression (MLR) (Westerhaus et 
al., 2004) and (ii) partial least squares regression (also called 
predictive latent space regression) (Wold et al., 2001).

In MLR, the number of spectral data points that can serve 
as predictors (p) is limited by the number of observations (n) 
due to a degrees of freedom deficit. Best subsets selection is a 
process for variable selection in MLR that optimizes a cho-
sen statistical criterion (e.g., r2, the predicted sum of squares 
[PRESS] statistic, or Bayes’ information criterion). A drawback 
of MLR is its inability to obtain a robust estimate of an indi-
vidual predictor’s slope when there is high multicollinearity 
among the predictors, a common feature of NIR spectral data. 
As a result, a model from MLR cannot be easily extended to 
data independent of the training set.

Partial least squares regression (PLSR) can include all of the 
NIR spectral information by utilizing singular value decompo-
sition of either the correlation matrix of the NIR spectral data 
or the covariance matrix between NIR and the soluble carbo-
hydrate data to summarize the variation into latent variables. 
Partial least squares regression methods have been applied with 
success to many NIR calibrations of soluble carbohydrates in 
wheat and other grasses (Brink and Marten, 1986; Centner et 
al., 2000; Shetty et al., 2012), in which both high levels of accu-
racy (r2 = 0.92–0.98, residual prediction deviance [RPD] = 
3.3) (Jafari et al., 2003; Chen and Wang, 2004; Decruyenaere 
et al., 2012) and moderate levels of accuracy (r2 = 0.71–0.78, 
RPD = 1.56–1.97) (Nie et al., 2009) have been reported. 
Partial least squares regression methods can summarize varia-
tion effectively, but they are computationally intensive.

Other statistical modeling approaches have been developed 
that handle both high multicollinearity and instances where 
p >> n. Shrinkage methods accomplish this by applying a 
biasing penalty that shrinks the magnitude of the regression 
coefficients. Ridge regression (and its mathematical equivalent 
best linear unbiased prediction, rrBLUP) applies a penalty that 
shrinks all the coefficients by a constant factor. Least absolute 
shrinkage and selection operator (lasso) selects variables and 
shrinks coefficients with a small absolute value more than 
larger coefficients. Elastic net is a compromise between the 
two using both the L1-norm (lasso) and L2-norm (ridge) for 
penalization of the regression coefficients (Tibshirani, 1996; 
Zou and Hastie, 2005). Bayesian lasso regression is a variation 
on traditional lasso where the variance of the predictors is not 

assumed constant and there is no variable selection of the pre-
dictors (Park and Casella, 2008).

Decision tree learning is another effective approach for gen-
erating robust predictions less sensitive to overfitting and for 
modeling nonlinear effects. Random forest is a type of non-
parametric decision tree that uses bootstrapping for creating 
the training set and samples the predictor variables randomly 
at each node to determine the best split (Breiman, 2001). 
Although there are several published reports of these methods 
outperforming PLSR in chemometric applications, they have 
not been widely used for NIR calibration (Chen and Martin, 
2009; Dyar et al., 2012; Lee et al., 2013).

To address these issues, we (i) evaluated different statisti-
cal approaches for predicting soluble stem carbohydrates 
using NIR spectroscopy and (ii) evaluated the ability of NIR-
predicted stem carbohydrates to predict wheat yield rankings 
under drought. We conducted two field experiments to evalu-
ate the performance of five spring wheat genotypes in multiple 
cropping systems and locations for a total of six environments 
over 2 yr in the semiarid Pacific Northwest of the United 
States. We used a diverse array of statistical models for the NIR 
calibration based on their ability to produce robust predictions 
when there is multicollinearity in the predictors and to use the 
entire data set for predictive models when p >> n. A reliable, 
fast, and simple method for assessing drought performance in 
early generation wheat breeding is essential for efficiently devel-
oping drought-tolerant wheat.

Materials and Methods
Genotypes

Five cultivars were used in the study: Alpowa, Blanca 
Grande, Louise, Otis, and Walworth. Alpowa (PI 566596) 
was originally bred for the low-rainfall regions of the state of 
Washington (Li et al., 2011). Louise (PI 634865) was developed 
for the high-rainfall region of Washington (>400 mm annual 
rainfall) but has exhibited widespread adaptation (Kidwell et 
al., 2006b). Otis (PI 634866) was bred for the intermediate 
rainfall zones (<400 mm) but has also shown wide adapta-
tion in the Pacific Northwest (Kidwell et al., 2006a). Blanca 
Grande (PVP 200200240) is a hard white wheat marketed for 
the western United States by Resource Seeds, Inc. Walworth 
(PI 630938) was bred in the Northern Great Plains, and its 
response to drought is unknown (Hall, 2003). Blanca Grande, 
Alpowa, and Louise have all been found to maintain similar 
yields across different rainfall regimes (Li et al., 2011).

Field Experiments

Field experiments were conducted in 2009 and 2010 at five 
locations in eastern Washington. These locations represent 
the rainfall gradient of Washington’s dryland wheat produc-
tion region (Table 1). The experiments were arranged in a 
randomized complete block design with four blocks and four 
replicates within each block. The experiments were conducted 
under diverse management systems. The conventionally 
managed locations were the Washington State University 
Dryland Experiment Station at Lind, WA, in 2009 and 2010 
(47°0¢3.96² N, 118°33¢33.48² W). The certified organic 
management sites were G&L Farms near Benge, WA, in 2009 
(46°52¢9.84² N, 118°1¢0.84² W) and the Washington State 
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University managed Boyd Farm (located near Pullman, WA, 
46°45¢0.72² N, 117°4¢54.48² W) in 2010, which was in tran-
sition to certified organic production. No-till management 
sites were the Juris farm in Bickleton, WA (46°0¢16.2² N, 
120°14¢26.16² W), in 2009 and the Aeschliman Farm at 
Colfax, WA, in 2010 (46°48¢6.48² N, 117°27¢7.56² W) (Table 
1). The plots in Lind, 2009 and Benge, 2009 were planted in 
rows of five with 25-cm spacing using a Wintersteiger planter. 
The plots in Lind, 2010 and Pullman, 2010 were planted in 
rows of 10 with 18.5-cm spacing with a Fabro planter (Fabro 
Enterprises). The plots at the no-till sites of Bickleton and 
Colfax were planted in rows of seven with 16-cm spacing by 
a custom-built planter fitted with cross-slot openers (Baker 
No-Tillage Ltd.). All plots were 460 cm long and 135 cm wide, 
except at Pullman, where they were 365 cm long to adjust for 
the greater yield potential for that environment, and Lind and 
Pullman in 2010, where they were 210 cm wide due to the 
planter used (Fabro). Plot widths include spacing between rows 
of plots. Previous evidence indicates that including the extra 
space results in yield estimates that more accurately reflect 
large-scale yield trials (data not shown). Plots were managed 
to control weeds and diseases. The plots were weeded by hand 
throughout the season. In 2010, the plots at Colfax where 
sprayed with propiconazole (1-[[2-(2,4-dichlorophenyl)-4-pro-
pyl-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole) at labeled 
rates in response to stripe rust infection (Puccinia striiformis f. 
sp. tritici). Before planting, the upper 33 cm of soil was sampled 
and tested for N, P, K, and S. Additional samples for N analysis 
(NO3 and NH4) were collected from the 33- to 66- and 66- to 
100-cm soil depths. Each site was fertilized at planting and 
planted at densities and fertilizer levels appropriate to the soil 
conditions and the expected grain yield for the rainfall zone 
(Koenig, 2005; Washington State University Extension, 2011).

Plant height at maturity was measured by averaging the 
heights of three plants within each plot that were representa-
tive of the plot. The plots were harvested at maturity with a 
Wintersteiger research plot combine. Whole-plot grain yield 
was measured for each plot and extrapolated to kilograms 
per hectare.

Laboratory Analyses

The upper nodes of 5 to 10 stems were sampled from each 
plot 180 degree days after the onset of anthesis (approximately 
10 calendar days), when the wheat was just beginning to 
undergo grain fill (Zadoks growth stage 72) (Zadoks et al., 
1974). Immediately after sampling, the stem tissue was dried 
for 72 h at 60°C, ground to a fine powder (0.2 mm), and stored 
at room temperature.

Near-infrared spectral readings of ground wheat stems were 
taken in duplicate using an optical-grade petri dish illuminated 
and interrogated from below using an Analytical Spectral 
Devices (ASD Inc.) high-intensity contact probe foreoptic. The 
dish was rotated 90° between readings and 10 internal scans 
integrated per recorded spectra. The spectra were recorded with 
an ASD AgriSpec full-range spectrometer (350–2500 nm, 
1-nm sampling, with 3-nm spectral resolution to 1000 nm and 
10-nm spectral resolution at longer wavelengths) after a warm-up 
time of at least 2 h and calibration with a white and dark refer-
ence. The two scans per sample were averaged, and a smoothing 

spline—weighted inversely to wavelength-specific instrument 
noise—was fit to the spectra as described by Brown et al. (2006), 
with reflectance (R) values extracted at 2- and 10-nm intervals. 
Commonly used transformations were applied to the reflectance 
data to reduce multicollinearity, including first derivative, second 
derivative, absorbance [log(1/R)] and the Kubelka–Munk (KM) 
function, derived for ideal diffuse reflectance spectra. All pre-
processing of data was performed manually in R versions 3.1.0 
to 3.1.3 (R Development Core Team, 2011) following the proce-
dures described by Brown et al. (2006).

Approximately 25% of the ground stem samples were ran-
domly selected from each environment and assayed directly for 
soluble carbohydrates. Between 19 and 23 samples were chosen 
from each environment, for a total of 124 samples in the train-
ing population. The remaining 353 samples constituted the 
unknown population, totaling 477 samples (three experimen-
tal plots were lost due to planting error).

Soluble carbohydrates were extracted using a modification 
of the methods of Xue et al. (2008). Samples of 0.5 g each were 
shaken in a hot solution of 80% ethanol, centrifuged for 15 min 
at 10,000 rpm, and the supernatants saved. This procedure 
was repeated three times. The supernatants were combined for 
each sample and brought to 10 mL with 80% ethanol. Soluble 
carbohydrate concentration was determined in the combined 
supernatants using the anthrone method (Yemm and Willis, 
1954), with glucose as a standard. The assay was independently 
performed twice on each extracted sample. For each assay, two 
aliquots were removed, their absorbances were measured at 
620 nm, and the results were averaged together. A linear calibra-
tion curve of the glucose standard was applied to the absorbance 
of each assay (r2 = 0.98), and the resultant concentrations were 
averaged across all technical replicates to give the final measured 
soluble stem carbohydrate concentration for each sample.

Near-Infrared Spectral Calibration 
and Model Evaluation

Seven modeling techniques to predict stem carbohydrates 
from NIR spectra were tested: MLR, PLSR with the SIMPLS 
algorithm (de Jong, 1993; Martens, 2001), PLSR with the sin-
gular value decomposition and principal component (SVDPC) 
algorithm (Martens, 2001), best linear unbiased predictor 
using the ridge regression kernel (rrBLUP) (Whittaker et al., 
2000), lasso (Tibshirani, 1996), elastic net (Zou and Hastie, 
2005), Bayesian lasso regression (BLR) (Park and Casella, 
2008), and random forest (Breiman, 2001).

Table 1. Field sites used and precipitation at each site during the 
experiment.

Location Year
Avg. annual 
precipitation†

Actual 
precipitation

————— mm —————
Lind 2009 247 212

2010 247 293
Benge 2009 301 276
Bickleton 2009 338 272
Pullman 2010 538 474
Colfax 2010 500 340
† �Average rainfall estimates provided by the Western Regional Climate 
Center using data gathered from regional weather stations for a mini-
mum of 50 yr (www.wrcc.dri.edu, accessed August 2014).

aba
Typewriter
Plantstress note: Precipitation amount decreases towards grain filling



288	 Agronomy Journa l   •   Volume 108, Issue 1  •   2016

All model building, testing, and other analyses of the 
spectral data were performed in R 3.1.0 to 3.1.3. Spectral 
data points in 2- and 10-nm intervals for absorbance, first 
derivative and second derivative of reflectance, and the KM 
transformation were used in the calibration models. Previous 
studies reported using spectral data in 2-nm intervals (Ruuska 
et al., 2006). However, because the spectral resolution of most 
spectrophotometers in the NIR range is 10 nm, both wave-
length intervals were tested. The spectral data points for each 
wavelength were standardized to a mean of zero and standard 
deviation of one across all samples before analysis. To assess the 
extent of multicollinearity in the data, principal component 
analysis was performed on the 10-nm spectral data set. The 
variance inflation factor could not be calculated for any of the 
data sets, regardless of the transformation, due to perfect col-
linearity between some of the predictor variables.

Model selection for MLR was performed using the 
Bioconductor package maSigPro (Conesa et al., 2006) and con-
firmed in Proc Reg of SAS Version 9.3 (SAS Institute). Partial 
least squares regression was performed using the PLSR package 
(Mevik and Wehrens, 2007). The number of latent variables as 
predictors in the model was chosen by minimizing the PRESS 
statistic, calculated as

 ( )2
,

1

ˆ
n

i i i
i

y y -
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Ridge regression in the mixed model with BLUP was per-
formed in the rrBLUP package (Endelman, 2011). The Glmnet 
package was used for finding lasso and elastic net estimates 
(Friedman et al., 2010). The optimal lamba values for lasso and 
elastic net were chosen by minimizing the average mean square 
error in leave-one-out cross-validation. The tuning parameter 
a was set at zero for lasso and 0.5 for elastic net. Bayesian 
lasso regression was performed with the BLR package (de los 
Campos et al., 2009) using the lambda from the model fitting 
as a starting point for the Gibbs sampler. The average of the 
estimates after 20,000 iterations was used, discarding the first 
10,000 as burn-in. The R package randomForest (Liaw and 
Weiner, 2002) was used to predict the data. The default set-
tings were used (maximum number of trees = 500, sample with 
replacement = true, maximum number of terminal nodes = n) 
with the exception that when the spectral variables were sam-
pled and tested for their efficacy in predicting y, the maximum 
number of predictors was attempted.

All calibration models were evaluated for changes in their 
predictive accuracy due to the effects of (i) wavelength inter-
val, (ii) data transformation, and (iii) the modeling technique 
using n-fold cross-validation (equivalent to leave-one-out). 
In addition, the effects of modeling techniques using only 
the 10-nm first derivative transformed data were tested using 
k-fold cross-validation of 10-fold, fourfold and twofold and 
by removing the data for a single experiment factor: environ-
ment, year, or cultivar. To calculate these, the data for a specific 
year, cultivar, or environment were omitted during the model 
building process, and then those data were predicted from the 
resultant calibration model. This process was repeated until all 
data points were predicted. The evaluation criteria for all cross-
validation procedures were standard error of prediction (SEP), 

the coefficients of determination for n-fold cross-validation 
(CV–i r

2) and k-fold cross-validation (CV–k r2), RPD (the ratio 
between the standard deviation of the measured values and the 
standard error of prediction), and bias. All statistical terminol-
ogy and equations are summarized in Supplementary Table S1.

Statistical Analysis of the Field Trials

To evaluate the effects of wheat cultivar and environment 
on the variation for soluble stem carbohydrates, the predicted 
soluble carbohydrate response data were subject to an ANOVA 
in the context of the multi-environmental trial described 
above. The data were analyzed both within and across sites in 
a generalized randomized complete block design using Proc 
Mixed in SAS, where the block was treated as a random effect 
and all other effects were treated as fixed effects:

( )( ) ( )hij i i h j j hiijY =m +a + +b + ab +eò

(h = 1,2,3,4 blocks, i = 1,2…,6 sites, j = 1,2,…,5 cultivars)

where Yij is the response variable, subject to the main effects of 
environment, ai, and cultivar, bj, and their interaction, (ab)ij. 
There were four blocks nested within each environment, with 
effects estimated as òi(h), and four replicates within each block, 
with error estimated as ej(hi), for a total of 80 plots per site and 
480 plots across the entire experiment. The relative portion of 
variation explained by the model terms were estimated by tak-
ing the ratio between the marginal sums of squares in Type III 
sums of squares analysis and the sums of squares total for each 
dependent variable. Supplementary Fig. S1 provides a diagram 
of the experimental workflow.

Results
Soluble Carbohydrate Assay

The results from the anthrone assay showed that the soluble 
carbohydrate data were normally distributed, with a mean of 
283.4 mg glucose g–1 dried stem tissue and a standard deviation 
of 75.87. Measurement error due to the extraction procedure 
and anthrone assay were quantitatively similar, with standard 
errors of 9.32 and 9.48, respectively. Two outlying observations 
were removed from the experiment due to having a Studentized 
residual with an absolute value >3. Both samples had an inade-
quate amount of ground stem material for NIR analysis, result-
ing in visually deviant NIR spectra.

Near-Infrared Spectral 
Transformation and Resolution

Principal component analysis revealed substantial multicol-
linearity among the spectral data points, particularly for the 
untransformed reflectance and the KM-transformed data. 
Principal component analysis of the first derivative of the spec-
tral data indicated that the first three components summarized 
just under 60% of the variation across the entire data set. In 
contrast, 98% of the variation in the untransformed reflectance 
and the KM-transformed data could be summarized in the first 
three principal components. The second derivative of the spec-
tral data was the least correlated across the x variables.

The influence of the data transformations on model per-
formance including the untransformed reflectance were 



Agronomy Journa l   •   Volume 108, Issue 1  •   2016	 289

evaluated by the SEP, CV–i r
2, and the RPD values from n-fold 

cross-validation. Both the first-derivative-transformed and the 
untransformed reflectance data had the highest CV–i r

2 and 
RPD across the different modeling approaches (Supplementary 
Table S2; Fig. 1). Most of the data transformations resulted in 
similar CV–i r

2 values, ranging from 0.44 to 0.71. However, 
the second-derivative transformation resulted in a lower CV–i 
r2 and a higher SEP. The first-derivative-transformed data were 
used for further analysis because the predictions from those 
data had the highest estimated accuracy in cross-validation.

Wavelength interval (2 or 10 nm) had very little impact on 
model accuracy. The results of the SEP statistic, CV-i r

2, and 
RPD all indicate that there was little gain in predictive accu-
racy from sampling spectra more intensively (2 nm). When the 
second-derivative-transformed data were used in 2-nm inter-
vals for calibration, the predictive accuracy was lower (data not 
shown). Because there was no improvement in prediction from 
using the 2-nm spectra, the smaller and less computationally 
demanding 10-nm spectra were used.

Calibration Model

We found that the PLSR methods were the most effective 
modeling techniques for predicting the known data with high 
precision (r2 = 0.95, CV–i r

2 = 0.85) and capturing the phe-
notypic variation present in the training population (Fig. 2; 
Supplementary Table S2). The singular value decomposition 
with principal components (SVDPC) kernel, a spectral decom-
position method that uses the correlation matrix between 
only the x variables, had a higher prediction accuracy than the 
SIMPLS algorithm, which is based on the cross-product matrix 
between x and y. The remaining statistical modeling techniques 
had very similar predictive accuracies. The shrinkage-based 
models (rrBLUP, lasso, elastic net, and BLR) and random 
forest models showed similar performance in terms of predict-
ing the data accurately and minimizing SEP cross-validation 
(Table 2; Supplementary Table S3). Multiple linear regres-
sion and random forest had low predictive accuracy in n-fold 

cross-validation, probably due to overfitting the small data set. 
The relative ranking of the models for predictive accuracy con-
sidering four statistics, SEP, CV–i r

2, CV–k r2, and RPD, was 
PLSR-SVDPC > PLSR-SIMPLS > BLR > rrBLUP > lasso > 
elastic net > random forest > MLR.

Despite different approaches to capturing the variation 
present in NIR spectra, the predicted values for the first-deriv-
ative-transformed data were quite similar for all models except 
MLR (Supplementary Fig. S2). The PLSR-SVDPC approach 
had the highest predictive accuracy across all cross-validation 
approaches. All model techniques produced stable models 
without a substantive drop in the coefficient of determina-
tion under different cross-validation approaches. The largest 
decrease in CV–k r2 was observed when a year, site, or combina-
tion of the two was omitted during model building.

Fig. 1. Comparison of prediction accuracy due to modeling technique using n-fold cross-validation. On the left axis is the standard error 
of prediction (SEP), and the right axis contains the residual prediction deviation (RPD), the ratio between the standard deviation and SEP. 
The modeling techniques included Bayesian lasso regression (BLR), elastic net, least absolute shrinkage and selection operator (lasso), 
multiple linear regression (MLR), random forest, ridge regression with best linear unbiased prediction (rrBLUP), the SIMPLS algorithm 
in partial least squares regression, and the singular value decomposition with principal components (SVDPC) algorithm in partial least 
squares regression.

Fig. 2. Predicted stem carbohydrates vs. their laboratory-
measured values using the singular value decomposition and 
principal component (SVDPC) calibration model. Both axes are 
in milligrams of carbohydrate per gram of stem dry weight. The 
dotted line is the location of a perfect fit.
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Field Trial
Both 2009 and 2010 were dry years, with lower than average 

annual precipitation for most of the field sites ranging from 
8.3% below normal (Benge) to 32.0% below normal (Pullman) 
(Table 1). A notable exception was Lind in 2010, which 
received 18.6% more total precipitation than usual. The experi-
mental wheat plots experienced high emergence (90–100%) 
and normal growth and development from the vegetative phase 
to maturity. All sites were subject to a late-season drought dur-
ing which very little or no precipitation was recorded between 
anthesis and harvest. The predicted stem carbohydrates from 
the PLSR-SVDPC model had a mean of 278.3 and standard 
deviation of 57.54. Their distributions were similar across the 
different environments. As a precautionary measure, we tested 
and found that plant height had no influence on the concen-
tration of soluble stem carbohydrates and did not need to be 
included as a covariate for an analysis of covariance.

The effects of environment and cultivar on soluble stem 
carbohydrates and grain yield were statistically significant 
across all sites, and cultivar had a statistically significant effect 
on those response variables within all environments (Table 
3). The effect of environment was responsible for 71.7% of 

the total variation in yield and 5.93% of the variation in stem 
carbohydrates (Table 3). The values for stem carbohydrates 
ranged between 150 and 375 mg g–1 dried stem tissue across 
environments. The effect of cultivar on stem carbohydrates 
and yield varied within each environment and for the different 
dependent variables (Table 3). Occasionally, the Pearson corre-
lation coefficient, r, was higher than the Spearman correlation 
coefficient, r. These patterns were inconsistent and were not 
correlated with year, management, or annual precipitation.

Soluble carbohydrate concentration was effective in predict-
ing yield rankings across sites and within sites when using 
least square means (r = 0.6–1, r = 0.683–0.922) (Table 4; 
Supplementary Table S3). The highest correlations were in 2009 
at Benge and Bickleton, which were both water stressed, and at 
Colfax in 2010, which was the most water sufficient of all the 
environments (Table 1). Regression analysis between the least 
square means for soluble stem carbohydrates and yield showed 
that the average yield increased 1 kg ha–1 for every increase of 
1.72 to 7.88 mg soluble carbohydrates g–1 plant tissue, depending 
on the environment (Fig. 3). The two highest yielding cultivars 
in this study, Alpowa and Louise, had the highest mean levels of 
soluble stem carbohydrates across environments (yield of 1718.62 
and 1837.65 kg ha–1, soluble carbohydrates of 328.18 and 
321.92 mg g–1, respectively). Blanca Grande, the lowest yielding 

Table 2. Standard error of prediction (SEP) of near-infrared-predicted soluble stem carbohydrates using Bayesian lasso regression (BLR), 
elastic net, least absolute shrinkage and selection operator (lasso), multiple linear regression (MLR), random forest, ridge regression 
with best linear unbiased prediction (rrBLUP), the SIMPLS algorithm, and the singular value decomposition with principal components 
(SVDPC) algorithm and different cross-validation approaches. The first derivative-transformed data in 10-nm intervals were used. 

Validation approach BLR elastic lasso MLR
Random 
forest rrBLUP SIMPLS SVDPC

n-fold 37.44 38.35 38.03 54.03 38.05 37.52 37.47 35.87
k-fold
  10-fold (repeated 50 times) 37.59 37.82 38.12 50.28 38.16 37.62 37.77 36.43
  Fourfold (repeated 50 times) 37.67 38.31 38.52 49.59 38.80 37.84 38.14 37.15
  Twofold (repeated 50 times) 38.92 39.58 39.92 46.17 41.10 39.60 40.45 39.79
  Leave out a cultivar 37.88 38.46 38.57 48.78 40.64 39.37 38.14 37.21
  Leave out a field site 43.36 44.01 43.68 60.83 43.33 43.58 45.00 43.21
  Leave out an environment (year–site 
combination) 43.43 44.13 43.46 59.23 44.40 43.73 44.04 44.15

  Leave out a year 45.93 46.45 46.91 62.36 47.99 46.48 48.56 48.39

Table 3. Results of ANOVA for soluble stem carbohydrates and 
yield, and the relative amount of variation of the variables ex-
plained in the linear model using Type III sums of squares.

Effect
Stem carbohydrates Yield

F-test Variation F-test  Variation
% %

Treatments across all environments
Cultivar (Cv) 84.90*** 33.05 37.50*** 8.39
Environment (E) 8.14** 5.93 85.91*** 71.71

Cv ´ E 6.84*** 13.86 2.55** 2.58
Cultivar within each environment

2009 Lind 76.39*** 79.77 26.95*** 58.29
Benge 3.22* 15.72 23.17*** 48.76
Bickleton 16.35*** 47.19 31.18*** 59.79

2010 Lind 11.90*** 38.98 15.33*** 36.99
Pullman 25.30*** 54.83 25.06*** 49.64
Colfax 13.87*** 10.38 3.45* 15.06

* P £ 0.05.
** P £ 0.01.
*** P £ 0.001.

Table 4. Correlation coefficients for Pearson and Spearman cor-
relations between soluble stem carbohydrates and grain yield 
using the raw data and least square means for each cultivar.

Source of 
variation

Raw data Least square means
Pearson Spearman Pearson Spearman
Within each environment

2009 Lind 0.466*** 0.469*** 0.683 0.7
Benge 0.236* 0.233* 0.786 0.9*
Bickleton 0.555*** 0.589*** 0.889* 1***

2010 Lind 0.189† 0.186 0.922* 0.7
Pullman 0.538*** 0.504*** 0.893 0.7
Colfax 0.408** 0.361* 0.873† 0.9*

Across all 
environments 0.292*** 0.298*** 0.904* 0.8

† P £ 0.10.
* P £ 0.05.
** P £ 0.01.
*** P £ 0.001.



Agronomy Journa l   •   Volume 108, Issue 1  •   2016	 291

cultivar (1347.72 kg ha–1), had the lowest mean soluble 
stem carbohydrates (232.32 mg g–1) (Fig. 4).

Discussion
Soluble stem carbohydrates are advantageous for 

crop improvement because they can be assessed early 
in the breeding cycle on a small number of plants, 
when accurate yield estimates from large plots are not 
feasible. The success of using stem carbohydrates in 
spring wheat as an early-generation yield indicator 
relies on (i) obtaining a reliable NIR calibration for 
soluble carbohydrates, and (ii) a strong correlation 
between yield and soluble stem carbohydrates. These 
two requirements were met, confirming the impor-
tance of soluble storage carbohydrates for drought 
response in the spring wheat germplasm and environ-
mental conditions of this study.

The importance of data quality rather than the sta-
tistical approach in determining model predictive accu-
racy was corroborated in this study. The relationship 
between NIR spectral data and soluble carbohydrates 
was linear and could be described efficiently using 
latent variables or a small number of variables with 
shrinkage approaches. Previous research with several 
of these regression and classification tools (BLR, lasso, elastic 
net, and random forest) indicated a tendency of these modeling 
techniques to capture the same variation present despite using 
different approaches for summarizing the variation (Heslot 
et al., 2012). A broad set of drought-prone environments was 
used in this study that reflect the target conditions of dryland 
wheat production. The wheat cultivars used are important to 
the regional wheat industry, but this panel could be too small to 
span the full extent of variation of soluble stem carbohydrates. 
More observations across a broader panel of wheat genotypes are 
needed to build a robust NIR calibration model for soluble stem 
carbohydrates and to clarify the relationship between soluble 
stem carbohydrates and grain yield.

Direct selection for yield under drought is challenging 
because it is a complex quantitative trait governed by innu-
merable genetic and non-genetic factors. Selecting indirectly 
for a correlated quantitative trait is more effective than direct 
selection when the genetic heritability is greater in the cor-
related trait than the target trait and the genetic correlation 
between the two traits is high (Falconer and Mackay, 1996). 
While grain yield and soluble stem carbohydrate concentra-
tion were highly correlated, the amount of phenotypic varia-
tion explained by cultivar for both traits varied across these 
experimental conditions. The amount of variation attributed to 
genotype in soluble stem carbohydrate concentration was four-
fold higher than in yield (33.05 and 8.39%, respectively) when 
this analysis was performed across environments. However, 
when the statistical analysis was stratified by environment, 
the amount of variation explained by cultivar was inconsistent 
for both yield and soluble stem carbohydrates. The Spearman 
rank correlations between the traits were moderate (0.4–0.6) 
to high (0.7–1) across and within environments, and the 
rankings were largely consistent across the different environ-
ments. Together, our results suggest that indirect selection for 
stem carbohydrate rankings can be more effective than direct 

selection for yield if the selection is for environments similar 
to those evaluated in the training set. Given that this is a small 
data set, these results should be viewed as proof of concept that 
needs further research under US Pacific Northwest conditions 
before widespread usage is justified.

Supplementary Materials

A supplementary file containing the following figures and tables 
is included: Fig. S1, a workflow diagram of the experiment; Table S1, 
abbreviations and statistics used; Table S3, an extensive set of results 
from the calibration tests; Table S4, a table of Spearman correlations 
between soluble stem carbohydrates and yield among the different 
environments; and Fig. S2, a panel of scatterplots for the measured vs. 
predicted stem carbohydrate concentration for each statistical model-
ing technique.

Fig. 3. Grain yield vs. soluble stem carbohydrates for each environment and 
their regression equations using least square means.

Fig. 4. Least square means for yield and stem carbohydrates by 
cultivar across all environments. The left and right axes indi-
cate grain yield (kg ha–1) and stem carbohydrate concentration 
(mg g–1 dry weight), respectively. Letters indicate pairwise differ-
ences (a = 0.05, Tukey’s adjusted) within each response variable.
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