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Review
Constraints in field phenotyping capability limit our
ability to dissect the genetics of quantitative traits,
particularly those related to yield and stress tolerance
(e.g., yield potential as well as increased drought, heat
tolerance, and nutrient efficiency, etc.). The develop-
ment of effective field-based high-throughput phenotyp-
ing platforms (HTPPs) remains a bottleneck for future
breeding advances. However, progress in sensors, aero-
nautics, and high-performance computing are paving
the way. Here, we review recent advances in field HTPPs,
which should combine at an affordable cost, high capac-
ity for data recording, scoring and processing, and
non-invasive remote sensing methods, together with
automated environmental data collection. Laboratory
analyses of key plant parts may complement direct
phenotyping under field conditions. Improvements in
user-friendly data management together with a more
powerful interpretation of results should increase the
use of field HTPPs, therefore increasing the efficiency of
crop genetic improvement to meet the needs of future
generations.

Why is phenotyping so important in the breeding
pipeline?
Crop production must double by 2050 to meet the predicted
production demands of the global population [1]. However,
achieving this goal will be a significant challenge for plant
breeders because crop yields would have to increase at a
rate of 2.4% per year, yet the average rate of increase is
only 1.3%, with yields stagnating in up to 40% of land
under cereal production [2,3]. Extensive breeding and
agronomic efforts over the past 50 years have been respon-
sible for tripling cereal yields [4]. Continuing advances in
the techniques available to breeders offer the potential to
increase the rate of genetic improvement [5]. Attempts
to exploit new molecular tools to their full potential
(Figure 1), particularly the ability to dissect the genetics
of quantitative traits such as yield and stress tolerance
[6–10], are limited by our ability to phenotype. However,
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plant breeders and farmers have been making selections
based on phenotypes long before the discovery of DNA and
molecular markers. The development of improved varieties
relies on the ability to identify the best genetic variation for
advancement. Breeding is essentially a numbers game: the
more crosses and environments used for selection, the
greater the probability of identifying superior variation.
Plant breeders want to be able to phenotype large numbers
of lines rapidly and accurately identify the best progeny. To
meet future needs there is a need to increase breeding
efficiency. Advances in high-throughput genotyping have
provided fast and inexpensive genomic information. Low
cost, high-throughput genotyping has paved the way for
the development of large mapping populations and diver-
sity panels of thousands of recombinant inbred lines for
phenotyping [11]. Although molecular breeding strategies,
such as marker-assisted recurrent selection (MARS) and
genomic selection, place greater focus on selections based
on genotypic information, they still require phenotypic
data [12]. In genomic selection, phenotypes are not used
for selection but are used to train a prediction model [13];
whereas in MARS, a single phenotyping cycle is used to
identify markers for subsequent selection through genera-
tions. Similarly, phenotyping is necessary to identify prom-
ising events in transgenic studies [14,15]. Given that
molecular breeding populations can include up to 5000
lines, the ability to accurately characterize all lines simul-
taneously is challenging [11]. Advances in phenotyping are
likely to be essential to capitalize on developments in
conventional, molecular, and transgenic breeding and en-
sure genetic improvement of crops for future food security.

High-throughput phenotyping

In recent years, there has been increased interest in high-
throughput phenotyping platforms (HTPPs) [16,17]. Most
HTPPs, both those run by the big transnational seed com-
panies and the most advanced public plant research institu-
tions around the world, such as the Australian Plant
Phenomics Facility (http://www.plantphenomics.org.
au/), the European Plant Phenotyping Network (http://
www.plant-phenotyping-network.eu/eppn/structure), and
the USDA (http://www.nifa.usda.gov/nea/plants/pdfs/
whitepaper_finalUSDA.pdf), (http://www.wheatgenetics.
org/downloads/Projects/HTP_ProjectNarrative_20130219.
pdf) are fully automated facilities in greenhouses or growth
chambers with robotics, precise environmental control, and
remote sensing techniques to assess plant growth and per-
formance. However, low-cost HTPP approaches are now
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Figure 1. (Upper) The four pillars of the crop breeding pipeline (environmental adaptation, phenotypic characterization, genetic diversity, and genetic information) and the

implications of phenotyping. The importance of phenotyping is highlighted by its involvement in two of these pillars. (Lower left) Mapping field variability in a non-

destructive manner implies the use of different methodological alternatives and its further integration. (Lower right) Diagram of the main categories of phenotyping

techniques deployed over the life cycle of an annual seed crop. Types of data acquisition include: proximal sensing and imaging at frequent intervals, laboratory analyses of

samples taken at specific intervals, and near-infrared spectroscopy (NIRS) of seed for oil or protein content during combine harvesting. Redrawn from [20].
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starting to be developed [18]. In this review, we examine the
need for high-throughput field phenotyping, the current
technical developments, and the factors that limit its im-
plementation, together with the future avenues that will
pave the way for its wide adoption in practical breeding.

Field phenotyping
Although HTPPs enable detailed, non-invasive informa-
tion to be captured throughout the plant life cycle in a
carefully controlled environment, quantitative trait loci
and candidate genes identified within controlled environ-
ments have generally not translated into gains in grain
yield in the field [19–21]. Field conditions are notoriously
heterogeneous and the inability to control environmental
factors makes results difficult to interpret. However,
results from controlled environments are far removed from
the situation plants will experience in the field and, there-
fore, are difficult to extrapolate to the field. The problems
53
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Figure 2. Continuum of environments for drought-resistance screening. The

control over environmental factors decreases from the use of growth chambers

to the target population environment (TPE), whereas the correlation of

performance with the target commercial environments increases. Rainout

shelters are designed to protect a selected area of land against receiving

precipitation so that an experimentally controlled drought stress can be imposed

on that area. Redrawn from [24].
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associated with controlled environments are well estab-
lished [6,22,23] (Figure 2). For example, the volume of soil
available to roots within a pot is considerably smaller than
in the field, thereby reducing the amount of water and
nutrients available to plants [24–26]. The soil environment
plays a crucial role in plant growth and development and is
difficult to simulate under controlled conditions [27].
Drought stress phenotyping is particularly challenging
because declining soil moisture content is associated with
increased mechanical impedance in the field, which is an
effect that is difficult to replicate within pots [28]. Moreover
plants in the field do not growth isolate but configuring a
canopy. Varietal improvement has heavily relied on mul-
tilocation screening within the target environment [29].
Here, plants experience a range of stresses throughout
their life cycle. In many cases, the environmental charac-
teristics are not monitored and, hence, are poorly under-
stood. This further complicates the ability to mimic the
field environment under controlled conditions. Phenotyp-
ing under field environmental conditions remains a bottle-
neck for future breeding advances [7,10,19,30,31]. Besides
the above considerations, the choice of phenotyping under
controlled conditions versus field environments largely
depends on the purpose of phenotyping and the heritability
of the trait, together with the logistical considerations of
collecting the data [10]. For example, there are no feasible
spatial or temporal options for testing high atmospheric
CO2 in the field [32].

Traits for phenotyping
The most successful traits for evaluation integrate in time
(throughout the crop cycle) and space (at the canopy level)
the performance of the crop in terms of capturing resources
(e.g., radiation, water, and nutrients) and how efficiently
these resources are used [19,33]. Different methodological
54
approaches have been proposed to evaluate these traits in
the field (Figure 1). Using the criteria proposed in [20] they
can be summarized into three categories: (i) proximal
(remote) sensing and imaging, (ii) laboratory analyses of
samples, and (iii) near-infrared reflectance spectroscopy
(NIRS) analysis in the harvestable part of the crop. Besides
the choice of the most appropriate traits, it is also crucial to
determine the key time(s) for their evaluation. Measuring
these traits at more or less frequent intervals during the
crop cycle together with the measurements of the harvest-
able components would be unfeasible (or at least impracti-
cal) and may even be negative in terms of the impact of the
trait for breeding.

Proximal (remote) sensing: different categories of

sensors

Remote sensing phenotyping methods are non-destructive,
non-invasive approaches [20,34,35] based mostly on the
information provided by visible/near-infrared (VIS-NIR)
radiation reflected (or transmitted) and far-infrared (ther-
mal) radiation emitted by the crop [36–41]. These methods
are termed proximal in the sense that information is
gathered ‘near’ the crop. Remote sensing techniques may
be deployed in in situ screening for a wide range of breeding
objectives, including yield potential, adaptation to abiotic
(water stress, extreme temperatures, salinity) and biotic
(susceptibility to pests and diseases) limiting conditions,
and even quality traits. Many categories of traits may be
measured under different environmental conditions using
remote sensing approaches, ranging, for example, from
green biomass through to photosynthetic transpirative
gas exchange and on to quality traits or even to predict
grain yield [39]. For example, the same authors [39] work-
ing with a set of 300 maize testcrosses grown under differ-
ent water and temperature regimes reported that partial
least square regression (PLSR) models from hyperspectral
reflectance of maize explained up to 40% of the variation in
grain yield in each trial, with a relative efficiency of selec-
tion of 0.88 and 0.68 using leaf and canopy reflectance,
respectively. Moreover, strong agreement has been
reported between remote sensing and imaging values of
traits measured by HTPPs at the land and aerial levels, as
well as through manual phenotyping approaches, with
determination values ranging between 0.35 and 0.82 in
the case of cotton under different water regimes [42]. These
results confirmed the ability of the phenotyping system to
measure multiple traits rapidly and accurately. Concern-
ing NIRS, it is already routinely used in breeding for a wide
array of food and feed quality traits [43]. In fact, NIRS can
be applied to drought or nutrient use efficiency screening,
or other more general breeding/gene discovery objectives.

The implementation in imaging formats of proximal
sensing with VIS-NIR and far-infrared radiation has en-
abled the process of taking measurements to be upscaled:
for example, from measuring a single plot to dissecting an
entire trial composed of different plots, providing that the
image has enough resolution (pixels). However, imaging
speed is limited by post-processing, which may include
image alignment, geometric and radiometric calibrations,
atmospheric correction, automatic mosaicking, and algo-
rithms for automatic image segmentation [44,45].
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Proximal (remote) sensing and imaging techniques in-
clude different approaches. The approaches that are most
implemented (feasible) for field phenotyping can be
grouped into three different categories (see Box 1 for
images): (i) VIS-NIR spectroradiometry (including multi-
spectral and the even less developed hyperspectral imag-
ing) [45], (ii) infrared thermometry and thermal imaging,
and (iii) conventional digital photography (RGB color cam-
eras). The first approach is undergoing rapid technical
advances associated with the use of high-resolution full-
range spectroradiometers that reach into the NIR region
Box 1. Cameras for crop monitoring

Different categories of imaging systems for remote sensing evalua-

tion of vegetation are detailed below with examples of prototypes

capable of being carried by UAPs of limited payload (Figure I).

RGB/CIR cameras

The combination of color infrared (CIR) and red, green, and blue light

(called visible or RGB) imagery enables the estimation of green

biomass (NDVI type of information). Miniaturization is advancing fast

with cameras that weigh only 100 g and have spectral range bands in

red, green, and NIR. Figure IA shows an image taken with a

multispectral mono lens camera (ADC Lite) of three bands.

Multispectral cameras

Multispectral imagers are widely used for crop monitoring via remote

sensing. They can acquire a limited number of spectral bands at once

in the VIS-NIR regions. Besides vegetation indices for evaluating

green biomass, multispectral imagers can be formulated to other

different spectral indices targeting senescence evaluation, nutrient

status, pigment degradation, photosynthetic efficiency, or water

content [84]. Figure IB shows an image taken with a multispectral

camera (miniMCA-6) of six lens.

Hyperspectral visible and near-infrared imager

The hyperspectral visible and near-infrared imager enables the

acquisition of hundreds of images at once, covering the entire

(A)

(C) 

(A) 

(C) 

Figure I. Examples of false-color images taken with different categories of camera
wavelengths around 2500 nm. This, together with the use
of special adaptors with their own light source, enables
such spectroradiometers to be used as field-portable NIRS
devices, generating large amounts of data with a wide
range of potential applications. Examples include the de-
velopment of empirical models to assess specific photosyn-
thetic characteristics related to radiation use efficiency
[46], or to predict a complex trait such as grain yield
[39], and the use of single spectroradiometrical indices
to predict yield [41]. At the imaging level, hyperspectral
sensors are being developed along similar lines, although
electromagnetic spectrum between the visible and the near-infrared

regions in a continuous mode (wavelengths ranging from 400 to

900 nm). Other configurations cover the range from 1000 to 2500 nm.

Therefore, it is possible to run empirical calibrations (like in a ‘NIRS

mode’) against a wide and miscellaneous set of traits. Figure IC shows

an image taken with a hyperspectral (Microhyperspec VNIR) camera.

Long-wave infrared cameras or thermal imaging cameras

Long-wave infrared cameras and thermal imaging cameras render

infrared radiation in the range of mm as visible light. Potential use of

thermal imaging in phenotyping includes predicting water stress in

crops, disease, and pathogen detection in plants, evaluating the

maturing of fruits and bruise detection in fruits and vegetables

[50,37,85,38]. The low resolution of the imaging (current cameras are

in the range of 640 � 500 pixels) may limit the use of such cameras

from aerial platforms. Thermal images obtained from a UAP using

this type of camera have a resolution in the range of 20–40 cm [41].

Figure ID shows an image taken with a thermal (MIDAS) camera. For

more information about imaging sensors, visit http://quantalab.ias.c-

sic.es/pdf/.

Conventional digital cameras (NDVI type work)

Conventional digital cameras are low-cost instruments that enable,

for example, plant cover (green biomass) or senescence to be

estimated. Moreover, the software needed is usually freely available.

(D)

(B)
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(B)

(D)

s: (A) RGB/CIR, (B) multispectral, (C) hypespectral, and (D) thermal imaging.
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it is not possible for them to carry their own light source
(specifically for large-scale images), thus this may repre-
sent a limitation [44]. Nevertheless, hyperspectral imagery
enables assessment of complex traits, such as canopy
photosynthesis and fluorescence under natural sunlight
conditions [45,47]. There are several software programs
available to process information to extract phenotype data
from images, including free options [10].

A general limitation of spectroradiometrical
approaches lies in the differences in plant architecture
and developmental stage, together with the anisotropic
characteristics of the leaf (mostly due to the leaf surface:
roughness, trichomes, epicuticular waxes). These may
negatively affect the estimation of traits (mostly of bio-
chemical traits) by spectroradiometrical approaches [10].
The effect of leaf anisotropy is more evident in the remote
sensing-based approaches that use reflected instead of
transmitted radiation, which is the situation in the ma-
jority of systems. Moreover, care should be taken, for
example, to standardize measures with plants at similar
developmental stages and exhibiting a narrow range of
variability in plant architecture, whereas sun elevation
should also be taken into consideration because the ma-
jority of spectroradiometrical evaluations in the field use
passive sensors. In the case of canopy temperature, varia-
tion in development and canopy architecture must be
taken into account (e.g., plant height, soil covering,
emerged spikes, leaf angle and size) when interpreting
performance and selecting cooler breeding lines [48,49].
This is in addition to the environmental variability (e.g., in
light intensity, temperature, relative humidity, wind
speed) and timing of measurements, which affects the
accuracy of thermal measurements [50].

Digital photography is also a promising approach given
the low cost of the sensor (i.e., a conventional camera) and
access to free software for data processing that enables
estimation of green biomass, soil cover, plant color [51,52],
or even agronomical components such as plant or inflores-
cence density.

Moreover, alongside these approaches, other techniques
are starting to be adopted for field phenotyping, such as the
use of laser imaging detection and ranging (Lidar). This is
an active remote sensing technique that uses Lidar sensors
to directly measure the 3D distribution of plant canopies as
well as subcanopy topography, thus providing high-resolu-
tion topographic maps and highly accurate estimates of
vegetation height, cover, and canopy structure [53–55].
Furthermore, laser scanning and fluorescence enables
evaluation of photosynthetic performance and has poten-
tial in areas such as plant pathology [56].

Field-based high-throughput phenotyping platforms

By combining advances in remote sensing, aeronautics
and high-performance, computing is paving the way for
the development of field-based HTPPs. Recently, several
platforms have been developed, ranging from ground-
based to aerial systems (e.g., the Australian Plant Phe-
nomics Facility, http://www.plantphenomics.org/hrppc/
capabilities/technology). Ground-based HTPPs include
modified vehicles equipped with a global positioning
system (GPS) navigation device and sensors often referred
56
to as ‘phenomobiles’. Different ‘phenomobiles’ have been
developed within the past few years [20,42,57–60] (http://
www.plant-phenotyping-network.eu/eppn/inra_diaphen).
For example, in the case of cotton a system has been
developed that carries four sets of sensors to measure
canopy height, reflectance, and temperature simulta-
neously on four adjacent rows, enabling the collection of
phenotypic data at a rate of 0.84 ha h�1 [42]. The mounting
of sensors (such as NIRS) on agricultural harvesters may
also be included within the category of ‘phenomobiles’
[61,62]. Ground-based HTPPs enable data to be captured
at the plot level and require little post-processing. Howev-
er, this also limits the scale at which ground-based HTPPs
can be used. Furthermore, simultaneous measurements of
all plots within a trial are not possible with ground-based
platforms.Aerial platforms are increasingly being consid-
ered as an alternative option to overcome limitations
associated with ground-based HTPPs. Aerial HTPPs en-
able the rapid characterization of many plots within min-
utes. Initial aerial HTPPs used small airplanes (e.g., crop-
dusting airplanes); however, this is costly and it is difficult
to safely achieve the low speeds required for high-defini-
tion images at low altitude. The current generation of
aerial HTPPs significantly varies in payload, initial costs,
maintenance costs, and control. Recently developed alter-
natives include ‘phenotowers’ [63] and blimps [64]. How-
ever, this type of aerial HTPP has a maximum height of 50
m. Blimps are helium-filled balloons that can be held in a
stationary position and have sensors mounted underneath.
They can carry a heavy payload (several kilograms), en-
abling many sensors to be used concurrently; however,
they require many people for control and considerable
room for storage when inflated. Alternatives to blimps
are unmanned aerial platforms (UAPs) such as polycopters
(e.g., Ascending Technologies: http://www.asctec.de; Mikro-
Kopter: http://www.mikrokopter.de) and airplanes (see
‘Innovative agricultural technologies for sustainable in-
tensification’ at the MAIZE Annual Report of the CGIAR
Research Program: http://repository.cimmyt.org/xmlui/
bitstream/handle/10883/3209/98018.pdf?sequence=1).
Although the payload of UAPs is lower than blimps, they
can generally carry up to 2 kg, enabling at least two
sensors to be mounted for simultaneous image capture.
UAPs enable greater flight control and autonomy and are
becoming increasingly affordable. Unlike airplanes, poly-
copters can be maneuvered into a stationary position;
however, advances in aeronautics and sensors now enable
high-quality images to be obtained from unmanned air-
planes. Furthermore, the autonomy and area covered by
airplanes is larger and the risk of destruction by crashing
lower than for polycopters. Most UAPs carry an RGB/CIR
camera, together with a thermal-imaging sensor [and
sometimes a conventional color (RGB) digital camera].
Replacing the RGB/CIR camera with a multispectral or
hyperspectral imaging sensor increases the payload but
opens up a huge range of new possibilities (Box 1). The
software requirements for UAPs include programs to: (i)
plan flight missions, (ii) gather the images, and (iii) extract
the data for plots within the images. UAPs are controlled
by an autopilot for autonomous flying; the ground control
station and the UAP are radio linked, transmitting
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Box 2. Phenotyping roots

Roots are notoriously difficult to phenotype in the field [26,86].

Besides technical considerations, screening under field conditions is

limited by significant soil environment–genotype interactions [87].

Traditional studies have focused on excavation techniques, from

which root depth and root length density can be determined.

Trenching is labor intensive and slow. Recently, the Australian

Commonwealth Scientific and Industrial Research Organization

(CSIRO) implemented a high-throughput soil-sampling system to

evaluate the maximum root depth and distribution [86]. This system

uses a hydraulic push press: 2–5 min per core and 200 cores (200 cm

long) per day. The system is being used to assess the impact of root

architecture traits on water uptake. To that end, continuous logging

of soil water content (gypsum blocks) and canopy temperature is

combined with root architecture. Another approach that has been

proposed for use in graminaceous crops and that is less intensive in

terms of the resources deployed is ‘shovelomics’ [88]. Values for

root architectural traits are derived from the visual scoring of roots,

which includes in the case of maize (Zea mays), numbers, angles,

and branching patterns of crown and brace roots.

Several non-invasive (i.e., indirect) techniques have been pro-

posed. These include, for example, electrical capacitance [89]. At the

level of root imaging, ground-penetrating radar has been explored,

but resolution limitations mean that it is still likely to be restricted to

trees and woody plants [86,90]. The use of electrical resistance

tomography, even if still mostly at the container level [91], is

perhaps more promising for mapping soil moisture and root

biomass in herbaceous crops in the field [92]. Other techniques

such as magnetic resonance imaging are still restricted to use at the

container level [63].

Root biomass and performance can also be assessed (indirectly)

through the evaluation of shoot proxy traits. This is the case for the

natural abundances of stable oxygen and deuterium isotopes in

shoot water [93]. The increasing availability of laser analyzers is

making such determination faster and less expensive than conven-

tional mass spectrometry. Canopy temperature has been used for

remote sensing of wheat (Triticum aestivum) lines with deeper roots

[94]. In the same way, D13C in dry matter may also be a valuable

indicator of differences in access to water by mature root systems

[95,96]s. Shoot biomass may also be considered as an indirect

indicator of root biomass and performance [86,96]. However,

problems of reliance on indirect measures of root growth may be

encountered under field conditions [60,86].
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position, altitude, and status. The imager is operated from
the ground station.

Laboratory and NIRS analyses

In addition to proximal sensing approaches, the analysis of
plant samples, for example, the analysis of stable isotopes
[65], may complement direct phenotyping under field con-
ditions. When breeding for yield potential and adaption to
abiotic stresses such as drought, carbon isotope discrimi-
nation (D13C) in dry matter is a promising tool that fre-
quently exhibits high heritability and genetic correlation
with yield [66–68], and has already been applied to breed-
ing programs [69]. The use of grain D13C relies on a good
understanding of tested populations and assumes no con-
founding of genotypic differences in phenology, anthesis
biomass, pre-anthesis water use, and remobilization of
stem carbohydrates [19,66,69]. Whereas D13C is still an
expensive tool for use in large-scale phenotyping, there are
low cost surrogates (see next paragraph). In addition, if
analyzed through the regular (mass spectrometry) tech-
nique, D13C can still be used on just the tails to complement
HTPP approaches. Other traits that may be deployed as
indicators of transpiration and, hence, of water use are the
total minerals accumulated in transpiring organs [70].

NIRS is regularly deployed not only at the laboratory
level but also in harvesting machinery to analyze grain
characteristics. When used in harvesting machinery, this
technique secures a broad distribution of measurements
within plots and covers substantially larger amounts of
plot material than analyses at the laboratory level using
conventional sample-based methods [61,62]. In any case,
the near-infrared spectrum captures physical and chemical
characteristics of the samples, either of vegetative plant
tissues or harvested seeds. By using calibration models,
several traits can be determined on the basis of a single
spectrum. Thus, NIRS is regularly used to analyze, for
example, the protein, nitrogen, starch and oil content,
grain texture, and grain weight of (intact) seeds
[20,61,62,71]. However, the same spectrum may be used
to develop prediction models for analyzing traits of poten-
tial interest for phenotyping for stress adaptation, such as
D13C, mineral content, or the composition of other stable
isotopes [34,72,73]. Although the precision of these indirect
estimations may be lower than those of direct analysis, the
rapid, low-cost, and non-destructive nature of NIRS may
justify its use, at least in the early generations of a breed-
ing program, as a first screening approach when thousands
of genotypes need to be evaluated.

Although considerable advances have been made for
evaluating the aerial parts of plants, roots are still hidden
in terms of phenotyping, despite their importance in cap-
turing resources for the crop. A broad overview of the
different approaches proposed for root phenotyping under
field conditions is set out in Box 2.

More than traits and tools: spatial variability and
environmental monitoring
Earlier HTPP initiatives have largely focused on pheno-
typing and little emphasis has been placed on environmen-
tal monitoring and reducing error variances. The
phenotyping environment plays a vital role in the quality
of phenotypic data generated through experiments and,
consequently, in the efficiency of breeding. Field variation
increases error variances, thereby masking important ge-
netic variation for key traits and reducing repeatability,
regardless of the cost and precision of a phenotyping
platform [74]. Spatial variation can be caused by several
factors, including the soil, which is inherently heteroge-
neous even in relatively uniform experimental sites.
HTTPs allow a larger number of genotypes to be pheno-
typed, thereby increasing the likelihood of soil variability
masking genetic effects. In general, as the land require-
ment of an experiment increases the harder it becomes to
find an area with minimum soil heterogeneity. Information
on field variability can be incorporated into field designs by
avoiding areas of high spatial variation [75]. The basic
concept is to create homogeneous blocks in which the ‘noise’
factors are held constant, whereas the factor of interest
(‘signal’) is allowed to vary. Earlier measurements of field
variation relied on direct (i.e., destructive soil sampling)
and subsequent laboratory analysis. However, advances in
proximal and remote sensing technologies enable high-
resolution mapping of spatial variability [76] (Figure 1).
Proximal sensors include cone penetrometers, which can
57
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be used to measure soil mechanical impedance and depth.
However, measurements are time consuming and, there-
fore, soil penetrometers are of limited use for obtaining the
necessary detail required to create field maps over large
areas [28]. Apparent soil electrical conductivity is closely
related to clay, water, and ionic content and electromag-
netic surveys can be used to determine field gradients in
soil texture [30,60]. Crop performance provides the best
indicator of field variability. Imaging techniques in parallel
with wireless sensor networks and geographical informa-
tion systems will allow a more precise mapping and moni-
toring of, for example, spatial variability [77]. For example,
aerial HTPPs that enable fast non-destructive GPS-linked
measurements of biomass using the normalized difference
vegetation index (NDVI) can be used to measure field
variability either on a single variety planted in the off-
season to develop subsequent planting maps or within
experiments to build up performance maps to guide plant-
ing of the next season. Compared with proximal sensors of
field variability (Figure 1), aerial HTPPs allow the rapid
characterization of experimental blocks (less than 30 min
for 1 ha plus data processing).

Environmental variability inconsistently affects pheno-
typic observation over both space and time and must be
accounted for in any statistical models that are used to
estimate parameters of interest [10]. Spatial modeling is a
key requirement because of the size of the trials, the time
taken to collate traits, and the use of high-throughput
phenotyping approaches. In that context, multitrait mixed
modeling looks promising for the analysis of traits collected
by aerial remote sensing platforms where multiple traits
derived from the same procedure may produce correlated
errors [26]. Linear models have long been the mainstay of
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quantitative genetic experiments and are the most com-
monly applied statistical approach to understanding phe-
notypic variation. However, they have inherent limitations
when measurements are not adequately replicated and not
normally distributed. In this regard, alternatives such as
the Bayesian inference may overcome the limitations im-
posed by a maximum-likelihood approach [10].

In HTPPs, the implementation of environmental charac-
terization is essential to facilitate data interpretation, meta-
data analysis, and, in the case of drought phenotyping,
understanding patterns of water availability [74]. Weather
data are frequently sourced from nearby weather stations at
the end of experiments; however, soil moisture is often not
measured [75]. The need for environmental data is particu-
larly pertinent in drought screening where knowledge of soil
moisture availability is necessary to ensure that the field
environment and the type of drought imposed are represen-
tative of the target environment [56]. Real-time information
on soil moisture can be used to facilitate irrigation decisions,
which is becoming increasingly important with increased
climatic variability in the off-season when managed drought
phenotyping is often conducted. The development of wire-
less sensor networks to characterize both climatic and soil
moisture conditions should enable real-time monitoring of
environmental conditions (Figure 3).

A better understanding of the stresses prevailing under
the target conditions is still needed [78]. Managed Envi-
ronment Facilities are becoming more important as they
permit selection under controlled stress [60]. Controlling
environmental conditions increases the accuracy of perfor-
mance measurements and the attribution of phenotypic
effects to individual traits and the underlying genetic
makeup [79].
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Field phenotyping bottleneck
HTPPs have benefitted in recent years from the rapid
progress that has been made in the development of a wide
array of technologies including novel sensors, image analy-
sis and modeling, robotics, and remote control and data
mining. Previously, time was the largest limitation to phe-
notyping, but HTPPs now allow plot-level measurements
within seconds. However, the bottleneck that may slow
down the full implementation of these platforms is the
management of the huge amount of information generated
[10,50]. Two of the main limiting factors that need to be
improved are: data management and use of bioinformatics
to mine the volumes of phenotypic data, and the way in
which modeling is used to incorporate genotypic, phenotyp-
ic, environmental, and management data [48,80]. Advanced
analysis tools are required beyond even the usual statistical
tools [20]. We do not even have a physical concept of what
some of the numbers obtained by HTPPs mean in terms of
plant or crop performance [10]. Much of the data are just
mathematical transformations of numbers, but perhaps
some linear combination of them will, for reasons we do
not yet understand, have some correlation with important
traits such as leaf angle and planting density [21]. However,
in the case of information generated through hyperspectral
sensors, the generation of a set of indices, even of a miscel-
laneous nature, does not enable full advantage to be taken of
the hundreds of wavelengths measured. In this regard, the
‘NIRS approach’, although it represents construction of a
purely empirical model, might use the most relevant infor-
mation regardless of whether it has a clear physiological
meaning or not [7]. Moreover, such an approach might share
with genomic selection the possibility of training a model by
adding new sets of data periodically.

Pyramiding all levels of information (different catego-
ries of traits measured at different times, spatial variabili-
ty, environmental information) in a coherent manner
requires the setting down of a strong modeling foundation
based on a wide but deep understanding of the ecophysio-
logical and genetic factors determining crop performance.
Above all, more user-friendly post-processing of the raw
data generated is needed. Improved software tools to
optimize automation and speed up robust data analysis
should support such a trend [81].

Concluding remarks and future perspectives
The capacity for undertaking precision phenotyping, par-
ticularly under repeatable and representative growing
conditions in the field, is lagging far behind the capacity
to generate genomic information. This is constraining
breeding advances. Developments (e.g., sensors, platforms,
and analytical capability) in HTPPs have enabled these
measurements to be made in situ; however, the integration
of data is lagging behind.

Field phenotyping of the appropriate traits, using low
cost, easy-to-handle tools, should become an integral and
key component in the breeding pipeline. Using technologi-
cal advances with regard to phenotyping instrumentation
should also go hand-in-hand with methods to characterize
and control field site variation (for improving repeatabili-
ty), adopting appropriate experimental designs, selection
of the right traits, and, finally, proper integration of
heterogeneous datasets, analysis, and application, includ-
ing prediction models [8,19,21,82,83]. Efficient integration
of all the components of the system is needed to pave the
way for the adoption of field HTPPs in the near future. This
includes more user-friendly data management combined
with data gathering and processing.
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